免维护作用
采用独特的气体再优化系统,使用中无需测量电解液比重、加水或加酸。
选用 工艺
产品与同类产品相比能量高。
自放电率低
生产原料纯度高,生产环节控制严格,电池自放电率低。
充放电性能好,过放电充电恢复能力强。
高倍率放电与低倍率放电两种设计。
长寿命设计
适用温度范围广:(-10-50)SAGTAR蓄电池规格参数:
型号 | 额定电压(V) | 标称容量(Ah) | 参考尺寸(mm)±2 |
长 | 宽 | 高 | 总高 |
NP4-12 | 12 | 4 | 90 | 70 | 102 | 106 |
NP5-12 | 12 | 5 | 90 | 70 | 102 | 106 |
NP7-12 | 12 | 7 | 151 | 65 | 94 | 99 |
NP9-12 | 12 | 8 | 151 | 65 | 94 | 99 |
NP12-12 | 12 | 12 | 151 | 98 | 98 | 102 |
NP17-12 | 12 | 17 | 181 | 76 | 167 | 167 |
NP24-12 | 12 | 24 | 166 | 175 | 125 | 125 |
NP33-12 | 12 | 33 | 196 | 131 | 163 | 180 |
NP38-12 | 12 | 38 | 197 | 165 | 170 | 170 |
NP55-12 | 12 | 55 | 228 | 138 | 208 | 227 |
NP65-12 | 12 | 65 | 348 | 168 | 178 | 178 |
NP70-12 | 12 | 70 | 260 | 168 | 208 | 231 |
NP80-12 | 12 | 80 | 260 | 168 | 208 | 231 |
NP90-12 | 12 | 90 | 329 | 172 | 215 | 243 |
NP100-12 | 12 | | =407 | 175 | 208 | 238 |
NP105-12 | 12 | 105 | 407 | 175 | 208 | 238 |
NP120-12 | 12 | 120 | 407 | 175 | 208 | 238 |
NP150-12 | 12 | 150 | 483 | 170 | 241 | 241 |
NP180-12 | 12 | 180 | 522 | 240 | 218 | 244 |
NP200-12 | 12 | 200 | 522 | 240 | 218 | 244 |
的硫化与清除方法
山特蓄电池技术发展100年来基本没什么变化。虽然在化学和结构上已有改进,但引起电池发生故障有一个共性的因素。这个故障原因是:硫酸盐堆积在极板上导致失效的结果,解决这些问题最有效的方法是应用脉冲技术。
脉冲技术有助于排除电池这些故障,它可以保持高的活性物质反应,使电池内部平衡,容易接受外接充电。这样一来,节约了因置换电池带来的各种相关费用。
影响山特蓄电池工作寿命的问题
专家预言:山特蓄电池的工作状态已越来越不能满足用户的需求。铅酸电池的工作寿命能维持8年-10年或更长一些,但事实上做不到。现在的电池平均寿命是6-48个月。而能用48个月的电池仅占30%。大部分电池则提前衰老和失效。影响电池寿命的一系列问题的原因是:硫酸盐的堆积,而最有效解决这些问题的方法是脉冲技术。
早在1989年就有第一个专利,利用脉冲技术提高电池的实用性,延长电池寿命。它的工作原理:使电池一直维持高的活性物质反应,使电池内部平衡,易接受充电。这种技术可提供大的放电容量,接受充电快,而且能使用持久。。
现在了解一下脉冲技术是如何有益于电池,其工作原理是什么。首先重温一下电池的工作原理:依照国际电池理事会手册第11版:“蓄电池是属电化学原理设计范畴,电池产生的电能是由存储的化学能转变的。在车辆和动力机械设备上需要电池,它的三种主要功能是:
1供电给点火系统,使发动机启动。
2给发动机外的电器设备供电。
3对电器系统起到稳压作用,使输出平滑和降低瞬间有电器系统发生高压。
山特蓄电池由两种不同材料构成(铅和二氧化铅),这两种材料置于硫酸液中反应产生电压,在放电过程,正极铅板上的活性材料与电解液的硫酸根生成PbSO4。同时,负极板上的活性材料也与电解液硫酸根生成PbSO4。所以,放电的结果使正负极板都覆盖了硫酸铅(PbSO4)。电池的恢复是通过对它反方向充电。
在充电过程,化学反应状态基本是放电的逆反应。这时正负极板上的硫酸铅(PbSO4)分解变为原来状态,即铅和硫酸根,水分解出“H”和“O”原子,当分离后的硫酸根与“H”结合还原为硫酸电解液。
从上所述,蓄电池的工作基本原理是硫酸和铅进行离子交换的化学反应过程形成的能量。在能量交换过程中,其反应生成物—硫酸铅在极板上是“临时”的。但值得注意的是,在充电还原过程,极板上的硫酸铅并不能全部溶解而堆在极板上。这种堆积物是电化学反应的剩余物,占据了极板的位置。这就是说,极板的有效反应材料在不断减少,这是导致电池失效的主要原因。(因硫酸铅导致电池失效,这种现象的通俗叫法是极板盐化)。
极板盐化问题:大多数电池失效归咎于硫酸铅的堆积。当硫酸铅分子的能量大于一个极限低值的时候,它们从极板上溶解,返回到液体状态。那么,它们可以接受再充电。但实际上,总有一部分的硫酸盐是不能返回电解液里的,而是贴附在极板上,最终形成不可溶解的晶体。硫酸盐结晶体是这样形成的:这些不能参与反应的单个硫酸盐分子的核心能量都处于极低状态,它逐步吸附其它因能量极低的硫酸盐分子。当这些分子堆积,并紧密地结合时,就形成一个晶体。这种晶体不能有效地溶解到电解液里去。这些晶体的存在,占据了极板的位置,使极板失去了充放电的能力。所以,极板被覆盖的这一点或这一部分都相当于是死点。
依照BCI手册58页说:“电池的本质是化学类器材,它的充电特性常常是由电池自身化学变化而改变的。例如,硫酸盐应是正常的化学反应生成物,但在非正常状态下,它变成多余物质而成为影响化学反应的主要问题,而这些多余的硫酸盐在极板上不断堆积,又长期被忽略。另外,新电池如存放时间过长,也会出现这种状态。当电池严重盐化时,就不能接受发电机对它的快而满的补充电。同样,也不能作满意的放电。随着盐化加剧,最终因电池不能接受充电和放电而失效。”安特电源第56页上说:“充电电压是受温度和电解液浓度、电解液接触极板的面积、电池的年限、电解液纯度等因素影响。极板上的盐化结晶很硬,使内阻增大。”
超过80%的电池是因为这些盐化晶体堆积而引起失效。这些晶体形成的速度、面积及硬度是与时间、电池充电状态、能量储备的使用周期有紧密关联。电池上的盐化结晶物堆积是非常麻烦的。以下几种情况是不可避免要产生盐化:
1山特蓄电池在安装使用前曾长时间搁置储存。实际上电池一旦加上硫酸液后就开始了化学反应而产生盐化物。所以,新电池的搁置也会盐化,导致安装不久的新电池就失效。
2山特蓄电池长时间不工作。
3电池受到侵蚀使充电期间内阻增加,引起充电不足的情况。
4持续过放电。
5温度影响。例如,当气温转热,随温度每增加10度,盐化速率呈2倍增长。在充电期间,如外界温度高,当电池的温度达75度时,内阻会增大,致使充电不足情况发生。当温度转冷,交通工具的润滑油变稠,这就需要更大的动力去启动车辆,也就是说,需要电池放电能力更大。其结果,加快了极板上盐化物的堆积。如果留意一下电池过放电的情况,安特电源就知道这时候的电池电解液凝固,这种情况极大地伤害了极板。
6UPS电源维修在充电不足的情况下,电池不能供给最大启动电流,这样对频繁使用的车辆经常发生死火。依照BIC手册说:“一辆使用一个充不满电的电池时,就有可能使发动机转速慢和空转不能启动,消耗电能。而反过来,电池也得不到发电机在最佳速率下充电。其结果,虽然电池用全天候充电,仍不能充满电。而又经常性地充电不足,电池盐化加重。这样恶性循环下去,最终使电池完全失效。
综上所述,山特蓄电池硫酸盐是能量转换过程必然之物,但硫酸盐的结晶物确是一个严重问题,而不是硫酸盐本身,这需要更多的人去了解这个问题的严重性—硫酸盐结晶使电池失效。其失效的现象包括:
1极板弯曲:极板某处有硫酸盐结晶削弱电能的接受,造成电池极板的某处过充电,而这种过充电使此处温度升高,使这里的极板弯曲。
2盐化使极板上栅格网眼的反应物脱落,会导致过充电,极板弯曲。
3短路:由于盐化使内阻增加,极板弯曲,接触了另一极性的极板而发生短路或破坏了支撑极板的框架。
4蓄电池活性物质的脱落:盐化结晶物使内阻增大,造成局部过充电,导致极板有裂缝和裂缝的物质脱落。
因此,应用脉冲技术去保护极板是最合适的,也有助于减低机械震动引起电池极板的损害。过去,在电池盐化后通常会被丢弃。但现在,脉冲技术能很好地解决这个问题。。
免维护铅酸蓄电池应用领域:ups电源,直流屏,eps电源,船舶设备,医疗设备,消防报警系统,铁路系统,发动机起动,电动工具,紧急照明系统,备用电力电源,计算机备用电源,峰值负载补偿储能装置,电力系统,电信设备,通讯系统,控制系统,核电站,发电站,消防和安全防卫系统,太阳能,风电站,电子称,门禁,信号,仪器仪表,电子设备等。