详细说明
几十年来,开关电源转换器拓扑结构一直以模拟技术为基础。虽然大多数转换器采用开关技术和脉宽调制(PWM),但出于功率半导体器件在处理层面上的兼容,以及成本效益的考虑,电路构成主要为模拟。不过,这种情况正在改变。在显着提高数据中心和电信系统效率的过程中,模拟技术及其电路暴露出自身的缺点。
数字开关电源管理和控制提供实时智能,便于系统开发人员构建电源系统自动适应运行环境的变化,并优化每种特定应用场合的效率。智能数字电源IC可以自动补偿负载和系统温度的变化,利用自适应死区时间控制、动态电压调节、频移、相数降低和电流不连续模式的切换来实现节能。
数字开关电源给人造成费用高的感觉一直是其被快速接受的一个障碍,不过,最新推出的器件正在迅速消除模拟与数字控制之间的价格差异,例如Intersil的ZL8800.数字电源效率和成本现在相当于,甚至优于模拟电源转换解决方案,同时具有更先进的功能。
最重要的是,脉宽调制(PWM)、环路控制和反馈采用数字化方式。模拟信号采用模数转换器(ADC)转换为数字信号,信号经过数字转换之后,微控制器、数字信号处理器或计算状态机可以控制数字脉宽调制和反馈回路。这对于维持稳定性具有重要优势,不存在模拟控制经常出现的响应速度下降问题。
虽然数字控制具有很多优点,但大量厂商并没有充分利用这种技术所具有的优势,许多情况下,只是核心模拟PWM技术采用数字形式。数字控制得以构建更加灵活的控制环路,利用多频控制调整每种算法,处理不同速度条件下发生的事件。
传统数字PWM控制器使用均匀采样。控制器采集输出电压误差样本,根据采样结果计算下一开关周期所需的占空比。均匀采样控制器的不足之处是,从误差采样到PWM控制器切换电源电路存在时延或群延。群延造成相位滞后,这种滞后随频率增加,并限制最大闭环带宽。
多频控制可以提供稳定开关电源,而且几乎可以立即对电压的突然变化做出反应,即在一个PWM开关周期内做出相应响应。这种转换架构实现这一能力的唯一方法是利用变频开关技术,在电压迅速变化时采用更高的频率采样和控制。但这种方法对许多系统并不适用。现代电信设备以及其他严格要求电磁兼容性的应用需要在固定频率下工作,以保持严格控制的噪声频谱。
另一种方法是采用与误差电压偏差呈线性关系的比例增益。采用比例增益的固定频率控制可以实现单周期反应,但快速响应环路增益会导致不稳。
Intersil开发的、用于ZL8800双通道/双相DC/DC控制器的电荷模式(ChargeMode)技术采用均匀和多频采样混合方法,在一个开关周期内对误差进行多次采样并计算调制信号。这种技术大大降低了群延,因此支持非常高的工作带宽。由于缩短了群延,显着降低了相位滞后。ZL8800还采用双沿调制器,在总群延方面优于与其竞争的‘前沿’调制器。