燃煤电厂烟气脱硫脱硝

名称:燃煤电厂烟气脱硫脱硝

供应商:中狮(北京)环保科技有限公司

价格:1.00元/台

最小起订量:1/台

地址:北京市密云区西田各庄镇雁密路99号

手机:15010514727

联系人:周 (请说在中科商务网上看到)

产品编号:105639706

更新时间:2017-05-17

发布者IP:123.114.200.152

详细说明

  我公司专业从事燃煤脱硫脱硝工程。

  M型低NOX燃烧器和M型炉内燃烧脱NOX相结合的方法,降低NOx排放主要有两种措施。 技术成熟,易于操作,且可确保锅炉安全、经济、稳定地运行,燃煤烟气脱硝锅炉效率等于或优于未采用M型低NOX燃烧器和M型炉内燃烧脱NOX相结合法的600MW超临界直流锅炉,且不增加机组运行费用,也不产生其他次生污染物。1)SCR脱硝反应

  微生物法烟气脱硝原理。其原理是适宜的脱氮菌在有外加碳源的情况下,利用NOx 作为氮源,将NOx还原成最基本的无害的N2 ,燃煤烟气脱硝而脱氮菌本身获得生长繁殖。其中NO2 先溶于水中形成NO34. 展望 及NO2 再被生物还原为N2 ,而NO 则是被吸附在微生物表面后直接被微生物还原为N2 。

  氯酸氧化工艺, 又称Tri-NOx-NOx Sorb 工艺,是采用湿式洗涤的方法,(3)不增加新的环境污染物;在一套设备中同时脱除烟气中的SO2和NOx 的方法,该工艺采用氧化吸收塔和碱式吸收塔两段工艺。氧化吸收塔是采用氧化剂HClO3 来氧化NO 和SO2及有毒金属,碱式吸收塔则作为后续工艺用Na2S 及NaOH 为吸收剂,吸收残余的酸性气体,该工艺NOx 脱除率达95 %以上。另外在脱除NOx ,燃煤烟气脱硝SO2的同时,还可以脱除有毒微量金属元素,并且与利用催化转化原理的技术相比没有催化剂中毒、失活或随使用时间的增加催化能力下降等问题。在20 世纪70 年代Teramoto 就发现次氯酸对NOx 的吸收,到了90 年代Brog4、 高温下催化剂的烧结ren 等人也进行了填充柱的研究,到目前该工艺还处于探索阶段。

  同时脱硫脱硝技术能够在一个过程内实现烟气中SO2 和NOx的同时脱除。虽目前大多处于研究阶段,离工业应用尚有一定距离,但从发展趋势来看,该类技术具有结构紧凑、运行费用低、脱除效率高等优点,燃煤烟气脱硝特别是已有的几种技术涵盖了从常温到高温的温度窗口,便于燃煤电厂根据锅炉自身的运行情况选择相应的技术。4、吸附法:最主要的方法为活性炭方法。

  在煤的燃烧过程中,NOx的生成量和排放量与燃烧方式,CnHm+O2→CO2+H2O (1)特别是燃烧温度和过量空气系数等密切相关。燃烧形成的NOx可分为燃料型、热力型和快速型3种。其中快速型NOx生成量很少,可以忽略不计。热力型NOx,燃煤烟气脱硝指空气中的氮气在高温下氧化而生成NOx。当炉膛温度在1350℃以上时,空气中的氮气在高温下被氧化生成NOx ,当温度足够高时,热力型NOx 可达20 %催化剂选型主要因素。过量空气系数和烟气停留时间对热力型NOx 的生成有很大影响。

  在一次或"主"燃烧段,主要燃料-煤粉在过量的空气中燃烧,(1) 气相反应法包括3 类:由燃料中和燃烧用空气中的氮形成NOx。二次燃料,又称为再燃燃料,通常是天然气或煤粉(油或任何其他的碳氢化合物燃料也都可以使用),在主燃烧段上方喷入,燃煤烟气脱硝形成富燃料的"再燃"段。从这一区段的再燃燃料中释放出来的烃基与主燃烧段中形成的NOx反应,NOx被还原成分子氮。最后,在再燃段上方喷入剩余的燃烧用空气,形成(2)反应剂的计量稀释和混匀;贫燃料的"燃尽"区,从而完成了燃烧全过程。

  当温度过低时,又会减慢反应速度,一般情况下,一次风的空气/煤粉比在C0附近,有时可能达到Cmax,这主要决定于干燥煤粉和输粉的条件。因此,采用一次风不分股的低M型NOX燃烧器时,燃料燃烧所生成的NOX相当于(NOX)C0,NOX的生成量就有可能接近峰值;如果减少一次风的量,控制一次风的空气/煤粉比在较低水平,使煤粉在浓燃料条件下燃烧,虽然可以降低NOX的生成量,维持稳定燃烧,但飞灰中的未燃碳将很高。反之,如果增加一次风量,将一次风的空气/煤粉比控制在较高水平,使煤粉在稀燃料条件下燃烧,虽然可以减少NOX的生成量和飞灰中的未燃碳,但燃烧不稳定。所以温度的控制是至关重要的。该工艺不需催化剂,但脱硝效率低,高温喷射对锅炉受热面安全有一定影响。存在的问题是由于温度随锅炉负荷和运行周期而变化及锅炉中NOx浓度的不规则性,燃煤烟气脱硝使该工艺应用时变得较复杂。在同等脱硝率的情况下,该工艺的NH3耗量要高于SCR工艺,从而使SCR系统主要设备。NH3的逃逸量增加。因此影响SNCR系统性能设计和运行。

  液体吸收法:由于烟气中的NOx90%以上是NO,而NO难溶于水,因此对NOx的湿法处理不能用简单的洗涤法。湿法脱硝的原理是用氧化剂将NO氧化成NO2,生成的NO2再用水或碱性溶液吸收,从而实现脱硝。在众多烟气处理技术中,燃煤烟气脱硝液体吸收法的脱硝效率低,净化效果差;吸附法虽然脱硝效率高,但吸附量小,设备过于庞大喷氨法亦称选择性非催化还原法(SNCR),是在无催化剂存在条件下向炉内喷入还原剂氨或尿素,将NOx还原为N2和H2O。它建设周期短、投资少、脱硝效率中等,比较适合于对中小型电厂锅炉的改造。还原剂喷入锅炉折焰角上方水平烟道(900~1000℃),在NH3/NOx摩尔比2~3情况下,脱硝效率30%~50%。在950℃左右温度范围内,反应式为:,再生频繁,应用也不广泛;

  在工程应用中,催化剂的布置方式有两种,一种是平板式,一种是孔道式。在孔道式结构中,又分为两种主要形式,一种是以TiO2为代表的均质整体式蜂窝陶瓷结构,一种是具有涂层结构的整体式蜂窝陶瓷催化剂,燃煤烟气脱硝通常采 2NO2+4NH3+O2→3N2+6H2O用具有大比表面积的材料对蜂窝陶瓷基体进行扩表并担载活性成分。

  在欧洲和日本早期建造的燃煤锅炉电站系统中,通常采用的是尾部SCR布置。在这种布置方法中,通常将SCR反应器布置在所有的气体排放控制设备之后,包括颗粒物控制设备和湿法烟气脱硫。在前面的气体控制设备中,已经移去了绝大多数对SCR催化剂有害的组分。但是,由于在尾部烟气的温度低于NH3/NOx反应所需要的温度区间,燃煤烟气脱硝因此烟气需要被重新加热。通常使用油或天然气的管路燃烧器或蒸汽式油加热器进行加在主燃烧器形成的初始燃烧区的上方喷入二次燃料,形成富燃料燃烧的再燃区,NOx进入本区将被还原成N2。为了保证再燃区不完全燃烧产物的燃尽,在再燃区的上面还需布置燃尽风喷口。改变再燃烧区的燃料与空气之比是控制NOx排放量的关键因素。在再燃烧系统中,分段供给的燃料和燃烧用空气在炉内形成三个不同的燃烧段,分别在贫燃料、富燃料和贫燃料状态下运行。在一次或"主"燃烧段,主要燃料-煤粉在过量的空气中燃烧,由燃料中和燃烧用空气中的氮形成NOx。二次燃料,又称为再燃燃料,通常是天然气或煤粉(油或任何其他的碳氢化合物燃料也都可以使用),在主燃烧段上方喷入,形成富燃料的"再燃"段。从这一区段的再燃燃料中释放出来的烃基与主燃烧段中形成的NOx反应,NOx被还原成分子氮。最后,在再燃段上方喷入剩余的燃烧用空气,形成贫燃料的"燃尽"区,从而完成了燃烧全过程。通常再燃燃料的热量占总输入热量的10%-30%。再燃技术可以减少高达70%的NOx。图2显示了再燃过程中三个不同的燃烧段。存在问题是为了减少不完全燃烧损失,需加空气对再燃区烟气进行三级燃烧,配风系统比较复杂。热。再热烟气的热能通常有一部分通过气-气换热器中进行回收。