详细说明
线绕电阻一般分为“功率线绕电阻”和“精密线绕电阻”。功率线绕电阻使用过程中会发生很大变化,不适于精密度要求很高的情况下使用。
线绕电阻的制作方法一般是将绝缘电阻丝缠绕在特定直径的线轴上。不同线径、长度和合金材料可以达到所需电阻和初始特性。精密线绕电阻ESD稳定性更高,噪声低于薄膜或厚膜电阻。
线绕电阻初始误差可以低至±0.005%。TCR(温度每变化一掇氏度,电阻的变化量)可以达到3ppm/℃典型值。
不过,降低电阻值,线绕电阻一般在15ppm/℃到25ppm/℃。热噪声降低,TCR在限定温度范围内可以达到±2ppm/℃。
线绕电阻加工过程中,电阻丝内表面(靠近线轴一侧)收缩,而外表面拉伸。
这道工艺产生永久变形,相对于弹性变形或可逆变形,必须对电阻丝进行退火。永久性机械变化(不可预测)会造成电阻丝和电阻电气参数任意变化。因此,电阻元件电性能参数存在很大的不确定性。
由于线圈结构,线绕电阻成为电感器,圈数附近会产生线圈间电容。为提高使用中的响应速度,可以采用特殊工艺降低电感。不过,这会增加成本,而且降低电感酌效果有限。由于设计中存在的电感和电容,线绕电阻高频特性差,特别是50kHz以上频率。
两个额定电阻值相同的线绕电阻,彼此之间很难保证特定温度范围内精确的一致性,电阻值不同,或尺寸不同时更为困难(例如,满足不同的功率要求)。这种难度会随着电阻值差异的增加进一步加剧。以1kΩ电阻相对于100kΩ电阻为例,这种不一致性是由于直径、长度,并有可能由于电阻丝使用的合金不同造成的。而且,电阻心以及每英寸圈数也不同一机械特性对电气特性的影响也不一样。由于不同的电阻值具有不同的热机特性,因此它们的工作稳定性不一样,设计的电阻比在设备生命周期中会发生很大变化。TCR特性和比率对于高精度电路极为重要。
传统线绕电阻加工方法不能消除缠绕、封装、插入和引线成型工艺中产生的各种应力。固定过程中,轴向引线往往采用拉紧工艺,通过机械力加压封装。这两种方法会改变电阻,无论加电或不加电。从长期角度看,由于电阻丝调整为新的形状,线绕元件会发生物理变化。