望牛墩PE塑胶回收公司
将10 g硅胶颗粒在甲烷磺酸溶液中浸泡24 h后用丙酮和蒸馏水冲洗, 得到活化硅胶颗粒。然后, 将15 m L交联剂TTS和10 g的活化硅胶颗粒加入到200 m L体积比为1∶1的乙醇和水混合溶液中, 在50℃下反应24 h, 得到表面修饰的TTS-Si O2。3 g的TTS-Si O2和10 g的MAA加入200 m L水溶液中, 并加入引发剂过硫酸铵, 通入氮气, 并在70℃下反应7 h。获得的产物用乙醇洗去未结合的MAA。最后, 在60℃下干燥4 h得到终产物PMAA/Si O2。而PAM/Si O2的获得与上述方法类似, 只是在反应中将10 g MAA换成AM。
聚乳酸-聚烯丙基丙交酯-b-聚乙二醇-b-聚乳酸-聚烯丙基丙交酯
PLAL-PEG-NH2
Poly(lactide-co-allyl lactide)-b-poly(ethyleneglycol)-Amine LA:AL 50:50聚乳酸-聚烯丙基丙交酯-b-聚乙二醇-氨基
PLAL-PEG-COOH
Poly(lactide-co-allyl lactide)-b-poly(ethyleneglycol)-Acid LA:AL 50:50
分子印迹聚合物是近年发展起来的新型重要分子识别材料,功能单体与模板分子形成稳定的复合物,以使交联聚合后把模板分子的结构固定在聚合物的母体中,产生识别位点。此外,功能单体的用量对聚合物的识别性能有较大的影响,但功能单体一模板分子比例过高时,所制备的聚合物具有更紧密的结构和的耐溶胀性能。因此,模板分子与功能单体的选择对于分子印迹聚合物的制备。2.1 模板分子的选择印迹过程可以形成与模板分子形状及功能基排列互补的孔穴有关,因此研究模板的分子结构对MIP分子识别性能的影响具有重要意义。用小分子芳香族化合物,部分羟基数目及羟基位置不同的羟基苯甲酸化合物为模板分子,采用非共价印迹技术制备了相应的MIP,通过对比研究,探讨了模板分子中作用基团的数目及位置对非共价MIP分子识别能力影响的规律。模板分子中含有较多作用基团有利于得到对模板分子具有高印迹亲和力的印迹聚合物,即得到高印迹效率的MIP。当模板分子中作用基团间能形成分子内氢键时,印迹效率降低。这是由于印迹过程中模板分子的分子内氢键削弱了其与氢键型功能单体丙烯酰胺的结合,从而降低了模板分子的印迹效率。
望牛墩PE塑胶回收公司
6 洗脱曲线IIP-PEI/Si O2的洗脱曲线如图8所示, 解吸率可以通过以下方程式进行计算: 解吸率 = 解吸液中金属离子量 /IIP-PEI/Si O2吸附的金属离子量×100% 结果表明, 在13 BV时, 解吸率达到99.04%。表明盐酸溶液对Cr3+的解吸率较高。这可能是因为PEI大分子上的氨基在强酸溶液下质子化 , N原子失去了与重金属离子螯合的能力。7 印迹条件对 IIP-PEI/Si O2的影响3.7.1 模板离子浓度的影响 Cr3+与IIP-PEI/Si O2上N原子的摩尔比通过改变Cr3+溶液的浓度变化, 合成出不同的印迹材料IIP-PEI/Si O2, 图9表明IIP-PEI/Si O2的饱和吸附量随着Cr3+和N原子的摩尔比变化的关系。 图 8 洗脱曲线:0.01 mol/L 的盐酸水溶液 ; 流 速 :1BV/h L;温度:20 ℃
Poly(ethylene oxide-b-propylene oxide)聚氧乙烯-b-聚环氧丙烷PEO-b-PtBuA
Poly(ethylene oxide-b-t-butyl acrylate)
聚氧乙烯-b-聚丙烯酸三丁酯
PEO-b-PtBUM
Poly(ethylene oxide-b-t-butyl methacrylate)