惠东硅胶制品回收公司
1960年,出现邻重氮萘醌-酚醛树脂紫外正性光刻胶 。
1968年美国IBM公司的Haller等人发明聚甲基丙烯酸甲酯电子束光刻胶。
1973年由Bell实验室和Bowden发明聚烯砜类电子束光刻胶。
1976年,美国麻省理工学院的H. Smith提出X射线曝光技术。
1989年,日本科学家Kinoshita提出极紫外光刻技术(EUVL)。
1990年后,开始出现248 nm化学增幅型光刻胶。
1992年,IBM使用甲基丙烯酸异丁酯的聚合物作为化学增幅的193 nm光刻胶材料。同年Kaimoto等也发现了非芳香性的抗蚀刻剂,而且在193 nm有较好的透光性 。
Barahona等[18]以噻苯咪唑 (TBZ) 为模板, 在二氧化硅颗粒表面固定引发转移终止剂, 通过活性可控自由基接枝聚合法制备SSMIP。他们将制得的SSMIP材料液作为谱固定相, 与通过沉淀聚合法制备的具有小粒径分布和核-壳形貌的印迹聚合物微球做了对比研究, 结果表明该方法具有简单、直接、所需试剂量少等优势。Li等[19]采用可逆加成-断裂链转移试剂功能化硅胶作为链转移剂, 通过表面引发可逆加成-断裂链转移 (RAFT) 聚合, 将MIP (分子印迹聚合物) 嫁接到硅胶颗粒表面, 制备了茶碱SSMIP吸附剂 (如图3所示) 。他们利用可逆加成-断裂链转移可控/活性聚合机理的内在特性对嫁接过程进行有效控制。在模板分子存在下, MAA和二乙烯基苯的接枝共聚可以在硅胶表面形成纳米级MIP薄膜 (膜厚约1.98nm) 。与本体聚合制备的茶碱MIP相比, SSMIP的传质性能明显改善。将SSMIP用于固相萃取, 其对血清中的茶碱的加标回收率在90%以上。
实施例12-((2-羟乙基)二硫烷基)乙基甲基丙烯酸酯(hsema)的制备将2,2'-二硫二乙醇(1.54g,10mmol)和三乙胺(1.52g,15mmol)溶解于50ml无水四氢呋喃中,冰水浴条件下冷却至0℃。将甲基丙烯酰氯(1.05,10mmol)溶于25ml无水四氢呋喃,剧烈搅拌下逐滴缓慢加入上述反应液中。室温下反应过夜,过滤除不溶性盐;然后,旋转蒸发以除去溶剂。将得到的粗产品用50ml乙酸乙酯稀释,并用水、饱和氯化钠溶液分别洗涤三次,以除去未反应的原料中杂质。分离收集有机相,用无水硫酸镁干燥。旋转蒸发浓缩溶液,然后通过二氧化硅柱分离纯化,流动相为乙酸乙酯/石油醚(1/3,v/v),得到纯的2-((2-羟乙基)二硫烷基)乙基甲基丙烯酸酯(hsema)。1h-nmr(cdcl3,δ,ppm,tms):6.14(s,1h),5.60(s,1h),4.43(t,2h),3.90(t,2h),2.98(t,2h),2.89(t,2h),1.95(s,3h)。
惠东硅胶制品回收公司
高量子产率金纳米团簇(CR-AuNCs)水溶性手性金纳米团簇(L-NIBC-AuNCs和D-NIBC-AuNCs)平均粒径小于2 nm
金纳米团簇-NFC复合物siRNA(GNC–siRNA)
剥离型环氧树脂/纳米复合材料
小粒径四氧化三铁纳米团簇
聚丙烯酸(PAA)修饰四氧化三铁纳米团簇(Fe3O4NCs)
聚乳酸-羟基乙酸-b-聚赖氨酸PS-PPBDPoly(styrene)-2-phenyl-2-propylbenzodithioate
mPEG-b-PGUA
Poly(ethylene glycol)-poly(glutamic acid)
聚乙二醇-b-聚谷氨酸
PGUA-PEG-PGUA