厚街PP吸塑长期回收
1960年,出现邻重氮萘醌-酚醛树脂紫外正性光刻胶 。
1968年美国IBM公司的Haller等人发明聚甲基丙烯酸甲酯电子束光刻胶。
1973年由Bell实验室和Bowden发明聚烯砜类电子束光刻胶。
1976年,美国麻省理工学院的H. Smith提出X射线曝光技术。
1989年,日本科学家Kinoshita提出极紫外光刻技术(EUVL)。
1990年后,开始出现248 nm化学增幅型光刻胶。
1992年,IBM使用甲基丙烯酸异丁酯的聚合物作为化学增幅的193 nm光刻胶材料。同年Kaimoto等也发现了非芳香性的抗蚀刻剂,而且在193 nm有较好的透光性 。
此外,PS-b-PMAA也可作为吸附剂,吸附水中的金属离子或污染物,广泛应用于水处理、环境保护等领域。由于PMAA部分具有良好的水溶性和离子交换能力,PS-b-PMAA可以有效去除水中的有害物质。在表面改性和涂层技术中,PS-b-PMAA常被用作增强涂层附着力的材料。PS-b-PMAA能够在表面形成致密的聚合物膜,改善材料的耐久性和抗腐蚀性。此类应用在电子产品和防腐材料中尤其重要。
聚乳酸-聚烯丙基丙交酯-b-聚乙二醇-叶酸PCLA-mPEG
Poly(caprolactone-co-D,L-lactide-)-b-poly(ethyleneglycol) CL:LA 50:50
聚乳酸-聚已内酯-b-聚乙二醇
PCLA-PEG-NH2
Poly(caprolactone-co-D,L-lactide-)-b-poly(ethyleneglycol)-Amine CL:LA 50:50
厚街PP吸塑长期回收
PEI 在SiO2上的接枝量:3.18 g/100 g;温度:20 ℃;pH=7PEI 在 SiO2上的接枝量:3.81 g/100 g;温度:20 ℃;时间:30 min;p H:7 3.4.3 选择吸附 IIP-PEI/Si O2对Cr3+/Zn2+和Cr3+/Pb2+在混合溶液中的竞争吸附, 相关分布系数kd数据、选择系数k和相对选择系数k' 如表1所示。从表1中可以看出: (1) 相对于Zn2+和Pb2+, PEI/Si O2对Cr3+的选择吸附系数较低,分别是0.456和0.354; (2) 相对于Zn2+和Pb2+, IIP-PEI/Si O2对Cr3+的选择吸附系数较高, 分别为11.23和21.00; (3) IIP-PEI/SiO2对Cr3+/Zn2+和Cr3+/Pb2+的相对选择系数分别为24.63和59.32。上述研究结果表明I-P-PEI/Si O2对Cr3+的吸附能力较强, 远远超过对Zn2+和Pb2+的吸附。这可能是因为对Cr3+的孔穴印迹与Zn2+和Pb2+的尺寸、形状及空间结构不符。Pb2+ (120 pm) 及Zn2+ (74 pm) 比Cr3+ (64 pm) 大, 所以无法进入Cr3+的印迹孔穴中。另外, PEI与Cr3+的配体为6, 而与Pb2+和Zn2+的配体为4。所以因为与结合点不相配 , Pb2+或Zn2+与IIP-PEI/Si O2结合。
He等[6]以3-甲基丙烯酰氧基丙基三甲氧基硅烷 (KH-570) 修饰的纳米硅为载体材料, 甲基丙烯酸 (MAA) 为功能单体, 乙二醇二甲基丙烯酸酯 (EGDMA) 为交联剂, 通过表面接枝共聚法制备了天麻素 (GAS) SSMIP。该SSMIP对GAS具有良好的选择性和较快的结合动力学, 对竞争底物的选择性系数为3.455, 吸附在40min可达到平衡。Gao等[7]以丙基三甲氧基硅烷 (MPS) 作为媒介物, 首次将功能性高分子聚甲基丙烯酸 (PMAA) 接枝到微米级的硅胶粒子表面 (PMAA/SiO2) , 以肌酐为模板, 乙二醇缩水甘油醚 (EGGE) 为交联剂, 通过PMAA和肌酸酐分子间的氢键和静电作用制备肌酐印迹材料MIP-PMAA/SiO2。实验结果表明:MIP-PMAA/SiO2对肌酸酐具有良好的亲和力和较高的识别选择性;而PMAA/SiO2粒子对肌酸酐几乎不存在选择性识别。在碱性条件下PMAA/SiO2对肌酐和肌酸的选择性系数分别为1.23和1.30;而MIP-PMAA/SiO2对肌酐和肌酸的选择性系数显著增大, 分别为11.64和12.87, 显示出对肌酸酐的识别选择性和亲和力。