顺德塑料水口上门收购
单分散羧基化聚苯乙烯微球的制备:
以分散聚合制备的直径2μm左右的聚苯乙烯微球为种子,通过种子聚合的方法制备了粒径在5-15μm的羧基化聚苯乙烯微球,并对种子聚合的机理,共聚的可行性进行了探讨,同时探索了单体溶胀时间,苯乙烯的加入量,甲基丙烯酸的加入量等反应条件对微球粒径和形貌的影响;通过酶联免疫反应评价了微球的表面反应能力和羧基的活性.
聚乳酸-聚已内酯-b-聚乙二醇-羧基
PLCL-PEG-NH2
Poly(lactide-co-caprolactone)-b-poly(ethyleneglycol)-Amine LA:CL 50:50
聚乳酸-聚已内酯-b-聚乙二醇-氨基PLCL-PEG-Folate
Poly(lactide-co-caprolactone)-b-poly(ethyleneglycol)-Folate LA:CL 50:50
Poly(2-vinyl naphthalene-b- n-butylacrylate)P2VN-PMMA
Poly(2-vinyl naphthalene-b- methylmethacrylate)
P2VP-PMMA
Poly(2-vinyl pyridine-b-methylmethacrylate)
P4VP-PMMA
顺德塑料水口上门收购
4 IIP-PEI/Si O2对 Cr3+离子的静态吸附表征3.4.1 动力学吸附曲线 动力学吸附曲线如图4所示。 IIP-PEI/Si O2对Cr3+离子的吸附速度较快, 吸附在30 min时达到平衡。这种的吸附平衡不只 是因为IIP-PEI/Si O2上对Cr3+的印迹孔穴, 也可能是因为薄印迹聚合物层扩散膜较小的阻力导致Cr3+离子更容易进入孔穴, 与识别点结合。2 吸附等温线图5和图6是PEI/Si O2和IIP-PEI/Si O2对Cr3+、Zn2+和Pb2+离子的吸附等温线。从图中可以看出: (1) 当金属离子的平衡浓度达到一定值时, 等温吸附量发生变化, 吸附达到饱和, 该类吸附因为是化学吸附, 所以为典型的单层朗格缪尔吸附模型; (2) 在离子印迹之前PEI/Si O2对Cr3+的饱和吸附量仅为6.14 mg/g, 但是印迹后的IIP-PEI/Si O2的饱和吸 附量为10。14mg/g。很明显, 与PEI/Si O2相比, 饱和吸附量增长了接近两倍。这说明, 在离子印迹之后, IIP-PEI/Si O2对Cr3+的亲和力显著改善。吸附量明显增长的原因是, 大量的与模板离子Cr3+形成了具有互补形状及空间形状官能团的孔穴; (3) 尽管PEI/Si O2对Zn2+和Pb2+离子的吸附量明显高于Cr3+, 区别不大, 但是IIP-PEI/Si O2对Zn2+和Pb2+的吸附量明显小于Cr3+。以上结论充分说 明I-P-PEI/Si O2对Cr3+具有高的亲和力及高的识别力, 对Cr3+具有的选择性。相关数据在表1中给出。
Poly(glutamic acid)-b-poly(ethyleneglycol)-b-poly(glutamic acid)聚谷氨酸-b-聚乙二醇-b-聚谷氨酸mPEG-PLCL
Poly(lactide-co-caprolactone)-b-poly(ethylene glycol) LA:CL 50:50
聚乙二醇-b-聚乳酸-聚已内酯