普宁塑料水口料上门收购
1960年,出现邻重氮萘醌-酚醛树脂紫外正性光刻胶 。
1968年美国IBM公司的Haller等人发明聚甲基丙烯酸甲酯电子束光刻胶。
1973年由Bell实验室和Bowden发明聚烯砜类电子束光刻胶。
1976年,美国麻省理工学院的H. Smith提出X射线曝光技术。
1989年,日本科学家Kinoshita提出极紫外光刻技术(EUVL)。
1990年后,开始出现248 nm化学增幅型光刻胶。
1992年,IBM使用甲基丙烯酸异丁酯的聚合物作为化学增幅的193 nm光刻胶材料。同年Kaimoto等也发现了非芳香性的抗蚀刻剂,而且在193 nm有较好的透光性 。
PEI 在SiO2上的接枝量:3.18 g/100 g;温度:20 ℃;pH=7PEI 在 SiO2上的接枝量:3.81 g/100 g;温度:20 ℃;时间:30 min;p H:7 3.4.3 选择吸附 IIP-PEI/Si O2对Cr3+/Zn2+和Cr3+/Pb2+在混合溶液中的竞争吸附, 相关分布系数kd数据、选择系数k和相对选择系数k' 如表1所示。从表1中可以看出: (1) 相对于Zn2+和Pb2+, PEI/Si O2对Cr3+的选择吸附系数较低,分别是0.456和0.354; (2) 相对于Zn2+和Pb2+, IIP-PEI/Si O2对Cr3+的选择吸附系数较高, 分别为11.23和21.00; (3) IIP-PEI/SiO2对Cr3+/Zn2+和Cr3+/Pb2+的相对选择系数分别为24.63和59.32。上述研究结果表明I-P-PEI/Si O2对Cr3+的吸附能力较强, 远远超过对Zn2+和Pb2+的吸附。这可能是因为对Cr3+的孔穴印迹与Zn2+和Pb2+的尺寸、形状及空间结构不符。Pb2+ (120 pm) 及Zn2+ (74 pm) 比Cr3+ (64 pm) 大, 所以无法进入Cr3+的印迹孔穴中。另外, PEI与Cr3+的配体为6, 而与Pb2+和Zn2+的配体为4。所以因为与结合点不相配 , Pb2+或Zn2+与IIP-PEI/Si O2结合。
从图10中可以看出, 初的饱和吸附量随物料比而递增, 原因是在增加ECH用量时, Si O2聚合层上的印迹空穴数量在增加, 因此IIP-PEI/Si O2的平衡吸附量增大。当ECH与N原子的摩尔比大于0.51后, IIP-PEI/Si O2的平衡吸附量增大, 即保持常数。 这个结果 表明IIP-PEI/Si O2的伯胺基、仲胺基在ECH与N原子物料 比为0.51的物料比的情况下与交联剂ECH反应, 并且可通过红外光谱来明。因此在这样的条件下, 当PEI/Si O2上形成的空穴数量达到限值时, 它不会再随PEI/Si O2的增加而增加, 并且IIP-PEI/Si O2的吸附量将保持不变。
普宁塑料水口料上门收购
Poly(methyl methacrylate-b-methacrylicacid)聚甲基丙烯酸甲酯-聚甲基丙烯酸PtBMA-b-PEO
Poly(t-butyl methacrylate-b-ethylene oxide)
聚甲基丙烯酸叔丁酯-b-聚氧乙烯
PMMA-b-PAA
Poly(methyl methacrylate-b-Acrylic Acid)
PIB-b-PDMSPoly(isobutylene-b-dimethylsiloxane)
聚异丁烯-b-聚二甲基硅氧烷
PIB-b-PCL
Poly(isobutylene-b-ε-caprolactone)
聚异丁烯-b-聚已内酯
PIB-b-P4VP
Poly(isobutylene-b-4-vinyl pyridine)