江海亚克力板材高价上门收购
19世纪中叶,德国人格里斯(J. P. Griess)合成出芳香族重氮化合物,并发现重氮化合物不但遇热不稳定,而且对光照也不稳定。
1884年,德国人韦斯特(West)首先利用重氮化合物的感光性显示出影像。
1890年。德国人格林(Green)和格罗斯(Gross)等人将重氮化的混合物制成感光材料。取得了第一个重氮感光材料的专利。不久,德国的卡勒(Kalle)公司推出了重氮印相纸,从而使重氮感光材料商品化,并逐渐代替了铁印相技术。
1921年,美国人毕勃(M. C. Beeb)等人将碘仿与芳香胺混合在一起,用紫外光照射得到染料像,称它为自由基成像体系。
1925年,美国柯达(Eastman-Kodak)公司发现了聚乙烯醇和肉桂酸酯在紫外光下有很强的交联反应并且感光度很高,随后用于光学玻璃的光栅蚀刻,成为光刻胶的先驱。
Methoxy poly(ethyleneglycol)-b-polyethyleneimine聚乙二醇-b-聚乙烯亚胺PCL-b-PEI
Poly(ε-caprolactone)-b-polyethyleneimine
聚已内酯-b-聚乙烯亚胺
PLGA-b-PLL
Poly(lactide-co-glycolide)-b-poly(lysine-Zprotected)
通过皮下注射将1×107个hepg2细胞注射到雄性balb/c裸鼠的右胁腹中来建立人肝细胞癌模型(hepg2)。当肿瘤体积达到50~100mm3时,将小鼠随机分为4组(n=4),通过尾静脉每两天分别注射pbs,空白pmaa纳米凝胶(根据实施例16制备),游离cpt,p(cpt-maa)纳米前凝胶(根据实施例6制备),非还原响应的p(cpt-maa)纳米凝胶(根据实施例5制备)。在整个治疗过程中,每两天测量小鼠的体重和肿瘤体积。基于下式计算肿瘤体积:(a×b2)/2,其中a和b分别代表肿瘤的长径和短径(mm)。在实验期间,一旦小鼠死亡,或肿瘤体积大于4000mm3,安乐死小鼠,收集主要器官。另外,在给后第21天处死小鼠,并收获肿瘤和主要器官。
江海亚克力板材高价上门收购
聚乳酸-聚烯丙基丙交酯-b-聚乙二醇-羧基PLAL-PEG-MAL
Poly(lactide-co-allyl lactide)-b-poly(ethyleneglycol)-MAL LA:AL 50:50
聚乳酸-聚烯丙基丙交酯-b-聚乙二醇-马来酰亚胺
PLAL-PEG-Folate
Poly(lactide-co-allyl lactide)-b-poly(ethyleneglycol)-Folate LA:AL 50:50
4 IIP-PEI/Si O2对 Cr3+离子的静态吸附表征3.4.1 动力学吸附曲线 动力学吸附曲线如图4所示。 IIP-PEI/Si O2对Cr3+离子的吸附速度较快, 吸附在30 min时达到平衡。这种的吸附平衡不只 是因为IIP-PEI/Si O2上对Cr3+的印迹孔穴, 也可能是因为薄印迹聚合物层扩散膜较小的阻力导致Cr3+离子更容易进入孔穴, 与识别点结合。2 吸附等温线图5和图6是PEI/Si O2和IIP-PEI/Si O2对Cr3+、Zn2+和Pb2+离子的吸附等温线。从图中可以看出: (1) 当金属离子的平衡浓度达到一定值时, 等温吸附量发生变化, 吸附达到饱和, 该类吸附因为是化学吸附, 所以为典型的单层朗格缪尔吸附模型; (2) 在离子印迹之前PEI/Si O2对Cr3+的饱和吸附量仅为6.14 mg/g, 但是印迹后的IIP-PEI/Si O2的饱和吸 附量为10。14mg/g。很明显, 与PEI/Si O2相比, 饱和吸附量增长了接近两倍。这说明, 在离子印迹之后, IIP-PEI/Si O2对Cr3+的亲和力显著改善。吸附量明显增长的原因是, 大量的与模板离子Cr3+形成了具有互补形状及空间形状官能团的孔穴; (3) 尽管PEI/Si O2对Zn2+和Pb2+离子的吸附量明显高于Cr3+, 区别不大, 但是IIP-PEI/Si O2对Zn2+和Pb2+的吸附量明显小于Cr3+。以上结论充分说 明I-P-PEI/Si O2对Cr3+具有高的亲和力及高的识别力, 对Cr3+具有的选择性。相关数据在表1中给出。