惠城PE保护膜高价上门收购
1960年,出现邻重氮萘醌-酚醛树脂紫外正性光刻胶 。
1968年美国IBM公司的Haller等人发明聚甲基丙烯酸甲酯电子束光刻胶。
1973年由Bell实验室和Bowden发明聚烯砜类电子束光刻胶。
1976年,美国麻省理工学院的H. Smith提出X射线曝光技术。
1989年,日本科学家Kinoshita提出极紫外光刻技术(EUVL)。
1990年后,开始出现248 nm化学增幅型光刻胶。
1992年,IBM使用甲基丙烯酸异丁酯的聚合物作为化学增幅的193 nm光刻胶材料。同年Kaimoto等也发现了非芳香性的抗蚀刻剂,而且在193 nm有较好的透光性 。
聚苯乙烯-b-聚丙烯酸钠PSSA-b-PEO
Poly(4-styrenesulfonic acid-b-ethyleneoxide)
聚4-苯乙烯磺酸钠盐-b-聚氧乙烯
PSS-b-PMB
Poly(styrenesulfonic acid-b-methylbutylene)
聚苯乙烯磺酸-b-聚甲基丁烯
Gauczinski等[4]将模板分子茶碱接枝到聚 (丙烯酸) 主链上, 通过对紫外线敏感的重氮聚阳离子用紫外光引发聚合, 在硅胶表面形成层层印迹薄膜, 制备了茶碱SSMIP。该SSMIP对与茶碱一个官能团差异的结构类似物咖啡因也显示出很好的结合特性。Yang等[5]以3-氨基丙基三乙氧基硅烷 (APTES) 为硅烷偶联剂和单体, 以青蒿素为模板, 以四乙氧硅烷 (TEOS) 为交联剂, 在硅胶表面通过接枝共聚法制备了青蒿素SSMIP。SSMIP对青蒿素的大吸附量为40.0mg/g。印迹因子和选择性系数分别为2.0和1.5。吸附在3.5h可以达到平衡, 在超临界CO2流体中SSMIP对青蒿素的吸附容量可以达到120.0mg/g。
惠城PE保护膜高价上门收购
聚氧乙烯-b-聚已内酯
PEO-b-PLLA
Poly(ethylene oxide-b-Lactide)聚氧乙烯-b-聚乳酸
PEO-b-PDLLA
Poly(ethylene oxide-b-D,Lactide)
聚氧乙烯-b-聚乳酸
PEO-PMAA
Poly(ethyleneoxide-b-methacrylic acid)
实施例6~9中引发剂的用量分别占原料总质量的3%、3%、2%、4%。经比较可以看出,随着引发剂用量的增加,制备得到p(cpt-maa)纳米凝胶的粒径随之增大,接枝率也有所提升。实施例10还原响应性p(cpt-maa)纳米凝胶-5的制备
将cpt-ss-m(50mg),甲基丙烯酸(450mg),甲叉双丙烯酰胺(26.3mg)和偶氮二异丁腈(15.8mg),加入到干燥的50ml单颈圆底烧瓶中,接着加入40ml无水乙腈,超声使溶解。通氮气0.5小时以除去反应体系中的空气,接着将反应混合物加热至沸腾状态并保持2小时。待反应结束后,收集反应混合物,以1×104转/分钟的转速离心10分钟,得p(cpt-maa)纳米凝胶。接着,加入20ml乙腈,超声分散均匀,离心,重复此操作三次,获得较纯的黄的p(cpt-maa)前纳米凝胶。该方法下cpt-ss-m的接枝率为90.2±0.6%,马尔文粒度仪测得的该纳米凝胶的粒径为385±6nm,电位为-19.5±0.9mv。