金平破碎料大量收购
1960年,出现邻重氮萘醌-酚醛树脂紫外正性光刻胶 。
1968年美国IBM公司的Haller等人发明聚甲基丙烯酸甲酯电子束光刻胶。
1973年由Bell实验室和Bowden发明聚烯砜类电子束光刻胶。
1976年,美国麻省理工学院的H. Smith提出X射线曝光技术。
1989年,日本科学家Kinoshita提出极紫外光刻技术(EUVL)。
1990年后,开始出现248 nm化学增幅型光刻胶。
1992年,IBM使用甲基丙烯酸异丁酯的聚合物作为化学增幅的193 nm光刻胶材料。同年Kaimoto等也发现了非芳香性的抗蚀刻剂,而且在193 nm有较好的透光性 。
Gong等[8]将乙烯基三乙氧基硅烷 (VTES) 嫁接到硅胶表面, 以青蒿素为模板, 丙烯酰胺 (AM) 和MAA为功能单体, EGDMA为交联剂, 通过2, 2-偶氮-2-异丁腈 (AIBN) 热引发聚合制备了青蒿素SSMIP。该SSMIP吸附在约10h达到平衡, 大吸附容量为37.13 mg/g, 对结构类似物蒿甲醚、蒿乙醚的分离系数分别为2.88和3.38。笔者课题组以对叔辛基苯酚 (PTOP) 为模板、MAA为单体, 活化硅胶为载体, 制备了PTOP-SSMIP[9]。该SSMIP对PTOP具有较大的吸附容量和良好的选择性, 其大吸附量约为86.12mg/g。同时在通过水解TEOS制得的二氧化硅微粒表面, 以乙烯基三甲氧基硅烷 (VTTS) 为接枝剂, 壬基酚 (NP) 为模板, MAA为功能单体, 制备了NP-SSMIP (如图1所示) [10]。该SSMIP对NP具有良好的结合亲和性, 大结合量可达184.6mg/g, 明显高于其结构类似物对叔辛基苯酚和双酚A, 表现出较高的选择性识别能力, 且与在市售硅胶 (70~230目) 表面制备的壬基酚和双酚A印迹聚合物的大吸附量 (壬基酚3.8mg/g, 双酚A 60.03mg/g、37.13mg/g) 相比均有明显的提高。这主要得益于TEOS水解制备的二氧化硅微粒粒径小且分散性好, 有效增大了SSMIP的比表面积, 从而使所制备的印迹微球对目标物有较高的吸附容量。
当反应温度升至80℃左右时开始滴加引发剂溶液和甲基丙烯酸溶液,控制滴加速度使反应维持3~4h并使反应温度控制在85~90℃之间。聚合反应完毕,冷却反应物,取样测定产物的黏度、固含量,检查产物的阻垢率,合格后桶入库。方法2:一种近临界水中聚甲基丙烯酸甲酯无催化水解制备聚甲基丙烯酸的方法。方法的步骤如下:
1) 在高压反应釜中加入去离子水和聚甲基丙烯酸甲酯,去离子水与聚甲基丙烯酸甲酯的质量比为1∶1~40∶1,开搅拌,常压下升温至沸腾,打开排气阀2~5分钟;
金平破碎料大量收购
Au24(SCH2Ph-tBu)20金纳米团簇Au44(SCH3)28手性金纳米团簇
刀豆求蛋白修饰金纳米团簇
半胱氨酸修饰金纳米团簇Au25Cys18
DHLA-AuNCs二氢硫辛酸保护金纳米团簇
巯基琥珀酸保护金纳米团簇
聚(N-乙烯基咪唑)配体金纳米团簇
树枝状聚合物PAMAM修饰金纳米团簇
实施例9还原响应性p(cpt-maa)纳米凝胶-4的制备将cpt-ss-m(50mg),甲基丙烯酸(450mg),甲叉双丙烯酰胺(55.6mg)和偶氮二异丁腈(22.2mg),加入到干燥的50ml单颈圆底烧瓶中,接着加入40ml无水乙腈,超声使溶解。通氮气0.5小时以除去反应体系中的空气,接着将反应混合物加热至沸腾状态并保持2小时。待反应结束后,收集反应混合物,以1×104转/分钟的转速离心10分钟,得p(cpt-maa)纳米凝胶。接着,加入20ml乙腈,超声分散均匀,离心,重复此操作三次,获得较纯的黄的p(cpt-maa)前纳米凝胶。该方法下cpt-ss-m的接枝率为94.1±0.8%,马尔文粒度仪测得的该纳米凝胶的粒径为537±3nm,电位为-20.7±1.9mv。