清溪PA12上门收购
1960年,出现邻重氮萘醌-酚醛树脂紫外正性光刻胶 。
1968年美国IBM公司的Haller等人发明聚甲基丙烯酸甲酯电子束光刻胶。
1973年由Bell实验室和Bowden发明聚烯砜类电子束光刻胶。
1976年,美国麻省理工学院的H. Smith提出X射线曝光技术。
1989年,日本科学家Kinoshita提出极紫外光刻技术(EUVL)。
1990年后,开始出现248 nm化学增幅型光刻胶。
1992年,IBM使用甲基丙烯酸异丁酯的聚合物作为化学增幅的193 nm光刻胶材料。同年Kaimoto等也发现了非芳香性的抗蚀刻剂,而且在193 nm有较好的透光性 。
PEO-b-PNIPAMPoly(ethyleneoxide-b-N-isopropylacrylamide)聚氧乙烯-b-聚N-异丙基丙烯酰胺
PEO-b-PnM
Poly(ethylene oxide-b-nitrobenzylmethacrylate)
聚氧乙烯-b-聚甲基丙烯酸苄
PEO-b-PPO
实施例6~9中引发剂的用量分别占原料总质量的3%、3%、2%、4%。经比较可以看出,随着引发剂用量的增加,制备得到p(cpt-maa)纳米凝胶的粒径随之增大,接枝率也有所提升。实施例10还原响应性p(cpt-maa)纳米凝胶-5的制备
将cpt-ss-m(50mg),甲基丙烯酸(450mg),甲叉双丙烯酰胺(26.3mg)和偶氮二异丁腈(15.8mg),加入到干燥的50ml单颈圆底烧瓶中,接着加入40ml无水乙腈,超声使溶解。通氮气0.5小时以除去反应体系中的空气,接着将反应混合物加热至沸腾状态并保持2小时。待反应结束后,收集反应混合物,以1×104转/分钟的转速离心10分钟,得p(cpt-maa)纳米凝胶。接着,加入20ml乙腈,超声分散均匀,离心,重复此操作三次,获得较纯的黄的p(cpt-maa)前纳米凝胶。该方法下cpt-ss-m的接枝率为90.2±0.6%,马尔文粒度仪测得的该纳米凝胶的粒径为385±6nm,电位为-19.5±0.9mv。
清溪PA12上门收购
Lv等[11]通过VTTS接枝后聚合MAA, 在硅胶表面覆盖高密度聚合物膜制备SSMIP, 并利用其固相萃取分离鱼样品中的诺氟沙星 (NOR) 。该SSMIP对NOR的大吸附量达423.2μmol/g, 选择性系数为14.64, 吸附在2h左右可达到饱和。Guo等[12]在二氧化硅表面通过VTTS接枝, 以AM为单体, N, N′-亚甲基双丙烯酰胺为交联剂, 聚乙烯醇 (PVA) 为辅助识别聚合物链 (ARPCs) , 制备了牛血红蛋白 (BHb) SSMIP。吸附动力学研究表明, 将ARPCs引入到印迹聚合物网络中明显改善了SSMIP对BHb的吸附能力。
开发基于醋酸纤维素(CAA)、羟丙基壳聚糖(HPCS)和氨基修饰的CNCs(CNC-NH2)的可注射多糖水凝胶。结果表明,CNC-NH2具有物理交联和化学交联的双重作用,其力学性能、内部形貌和胶凝时间取决于CNC-NH2的含量。另外,研究发现该水凝胶在生理条件下表现出pH响应特性,在酸性条件下表现出自愈行为,并且具有良好的生物相容性,因此其在实际生物医学应用中展现出巨大潜力。本文以甲基丙烯酸(MAA)为单体,十二烷基硫醇(DDT)为链转移剂,通过自由基聚合得到了水溶性的硫醚端基聚合物配体DDT-PMAA,进一步将配体DDT-PMAA作为稳定剂通过高温共沉淀法制备了水溶性的四氧化三铁磁性纳米颗粒