湖南PA尼龙长期回收
尽管时至今日,人们为防止传染性病原体的传播作出了广泛的努力,但传染病仍然是美国和全世界第三大导致死亡的原因。医疗相关的感染(HAI)仍然是世界上最为紧迫和最昂贵的医疗保健问题之一。受污染的环境硬表面和软表面在感染传播中起了关键作用,它们导致了大约有记录的与医疗相关的感染的爆发的20%。交叉感染不仅是导致医院疾病爆发和死亡的主要原因,而且还显著增加了入院病人的住院时间和医疗开支。医院感染率,特别是那些由耐药性细菌引起的感染率,在全球范围内正在以惊人地速度增加。虽然更为严格的感染控制措施正在实施,但很显然,目前所使用的减少医院感染的方式是远远不够的。传染源传播的一个关键因素是致病微生物在环境表面上存活的能力。已经被大家所共识的是,许多感染源可以在环境中存活很长时间。
7 其他方面的应用淀粉接枝共聚物在纺织、印染等领域也有广阔应用。Mostsfh M等人[36]在棉花纤维中分别加入用不同水解度和氧化度制备的羧甲基淀粉和丙烯酸接枝淀粉,结果发现织物的抗皱性和伸展性都有提高。张斌等[37]以丙烯酸丁酯与玉米淀粉为原料合成的接枝淀粉,同时对亲水性纤维和疏水性纤维有良好的粘附力,是取代聚乙烯醇作为疏水性纤维纱线的上浆用型浆料。此外,唐星华[38]用铬酸引发丙烯酸正丁酯与淀粉接枝共聚反应,产物经皂化后粘稠性好,而共聚物本身成膜性能好,可望作为生物降解性材料的基质而开发应用,也可作为增稠剂用于纺织、印染等工业部门。接枝淀粉还可用做建筑清洁剂[39]和热敏性材料[40]等。
重与轻钙明显的区别就在于产品的堆积密度不同。重钙产品的堆积密度较大,一般为0.8~1.3g/cm3;而轻钙产品的堆积密度较小,多为0.5~0.7g/cm3;一些纳米碳酸钙产品的堆积密度甚至更低,可以达到0.28g/cm3左右。由产品的包装体积也可以粗略分辨出重钙和轻钙产品,一般重钙产品多为25kg/包,产品包装体积较小,而同等质量的轻钙产品包装体积明显较大,一些纳米碳酸钙产品还采用15kg/包或20kg/包的包装。惯上我们常用沉降体积来衡量碳酸钙密度的大小。沉降体积是单位质量的碳酸钙在100ml水中振荡并静置3h后所具有的体积(ml),沉降体积越大说明产品粒度越小、密度越轻、产品档次越高。
湖南PA尼龙长期回收
5 悬浮接枝纳米SiO2的悬浮接枝方法使用不多, 该方法与乳液聚合有相似之处, 反应体系主要由单体、引发剂、水和分散剂等基本组分组成。例如李晓萱等[7]采用KH-570硅烷偶联剂处理纳米SiO2, 在纳米SiO2表面引入双键, 以PVA为分散剂、BPO为引发剂, 引发甲基丙烯酸甲酯在纳米SiO2表面的接枝聚合。
2.4.6 原位直接聚合接枝
纳米SiO2的接枝反应目的是使纳米SiO2有机化, 降低纳米SiO2表面活化能, 这通常需要进行预处理, 工艺步骤较多。为了提高纳米SiO2的有机化效率, 有人直接采用单体在纳米SiO2表面共聚有机化纳米SiO2。但是纳米SiO2是亲水性较强的无机填料, 而大多数聚合物的亲水性较弱, 因此利用表面活性剂与纳米SiO2的氢键作用对纳米SiO2进行包覆, 改善纳米SiO2与单体的亲和性, 然后再进一步引发单体在纳米SiO2表面的接枝共聚, 使纳米SiO2更有效地被有机化[33]。原位直接共聚接枝法还可以利用白炭黑表面硅羟基与环氧基团的可反应性进行接枝[34]。
4 阻燃前后的扫描电镜分析为了解纤维接枝改性后形态的变化,利用扫描电子显微镜观察了接枝后纤维的表面形态,并与未接枝的纤维进行比较。图4为原绒放大2×10 000倍下的电镜照片,可以看出其表面有很多的凹槽。图5为氟钛酸钾阻燃处理后的羽绒样品放大2×10,000倍下的电镜照片,可以看出表面凹槽的纹理和原绒的基本没变化,说明氟钛酸钾处理对羽绒纤维表面的破坏较小。
采用氟钛酸钾接枝的羽绒纤维进行了红外光谱分析,通过观察谱图指纹区找到-TiF62-基团吸收峰,说明氟钛酸钾接枝到羽绒纤维基团上,热失重曲线中可以看出阻燃后的羽绒纤维热失重起始温度降低,快热失重速率提高,热失重温度范围变窄,且明显提前,燃烧产生不可燃物质有助于阻燃。扫描电镜观察到阻燃后羽绒纤维表面凹槽并没有明显变化,说明阻燃处理对羽绒纤维表面伤害较小。测试得残炭率18.43%~37.15%,大于原绒的13.78%,氧指数36.5%~41.8%,远远大于原绒的23%,阻燃性能得到明显提高。