您的位置:商铺首页 >> 行业资讯 >> 详情

重庆PA水口料上门收购

时间:2025-09-25 00:08

  重庆PA水口料上门收购

  在不限制本发明的范围的前体下,本发明所描述的背景为与抗微生物和除臭相关的配方、方法和负载体系,以向软和硬表面提供抗微生物和除臭功能性涂层,材料包括纺织品、有机和无机固体介质、颗粒、多孔和无孔介质以及其他包括人和动物皮肤、皮肤损伤;用于中和人和动物产生的液体、固体废物气味,以及通过与功能性涂层接触的方式来氧化分解有害物质。

  在不限制本发明的范围的前提下,通常基于通过结合配方和方法来稳定含N-卤胺的抗菌和除臭目标产品;提供用于降低基于卤素的功能性涂层目标产品的氯气味和气相腐蚀性的配方

  3 等离子接枝。等离子体是在特定条件下使气(汽)体部分电离而产生的非疑聚体系。它由中性的原子或分子、激发态的原子或分子、自由基、电子或正离子、负离子以及辐射光子组成。体系内正负电荷数量相等,呈电中性。这种的状态有别于固、液、气三态物质,被称作物质存在的第四态。另外,按温度分类,可以把等离子体分为热等离子体和冷等离子体。

  等离子体接枝炭材料是先对炭材料进行等离子体处理,利用表面产生的活性自由基引发单体在炭材料表面进行接枝共聚,或是将炭材料表面分子的化学键打断并引发等离子体化学反应(氧化、交联),引入含氧、含氮基团(--COOH,C=O.-NH,-OH),从而使表面被等离子体活化,再将具有特定性能的单体接枝于活化的炭材料表面,使其具有相应的单体功能。李勇等[4]研究了通过等离子体处理炭黑引发乙烯基单体进行接枝聚合反应,可使炭黑表面的自由基活性增大。接枝后的炭黑颗粒能产生较好的分散稳定性,其中甲基丙烯酸丁酯的分散稳定性效果较为显著。

  3 单体的接枝步辐照后将纤维接着放入单体溶液中浸泡3h,溶剂采用丙酮和去离子水的的混合溶液(1∶1),浸泡后的纤维放入通N2除氧的石英管中辐照反应一定时间,反应后的样品用去离子水洗涤后再用丙酮抽提24h。

  1.4 测试与表征

  全反射傅里叶红外变换(ATR-IR)采用Nicolet Nexus 670型傅里叶变换红外光谱仪,附件采用PIKE ATR Max II以及ZnSe (n =2.43)晶片,扫描次数为32次;可见紫外吸收光谱使用了UV-VIS8500紫外分光光度计(中国TECHCOMP);纤维表面形态的观察使用JEOL JSM-6360LV扫描电子显微镜(SEM);裂解谱质谱分析采用2020is 裂解器(日本Frontier公司),气质联用仪为GCMS-QP2010,载气为氦气,流速为50 mL/min,裂解温度600℃;接枝率(GD)采用重量法计算:undefined

  重庆PA水口料上门收购

  从图1还可以看出,在700~550 cm-1出现了一个弱吸收的宽峰,由于羽绒纤维为天然蛋白质纤维,其结构复杂,基团繁多,查阅文献[11]可知,TiF62-峰出现在600~540 cm-1处,由于接枝的量很小,导致峰较小。说明金属离子接枝到羽绒纤维上。2.3 羽绒纤维改性前后热失重分析

  羽绒纤维改性前后热失重曲线,见图2、图3所示。

  由图2、图3可见,接枝氟钛酸钾后的羽绒纤维第二阶段热裂解起始温度由原绒的258.1 ℃变为238.8 ℃,快热失重温度从334.3 ℃降低至320.1 ℃左右,快热失重速率从5.45%/min降至5.17%/min,纤维的热失重温度范围变窄,而且明显提前,说明纤维的整体热稳定性降低,这是由于此阶段的分解主要是纤维上的氟钛酸钾的裂解,并伴随纤维本体自身的裂解,并且氟钛酸钾对羽绒纤维的热分解起到了催化作用。另外,在此阶段的裂解过程中,纤维在187.2~250.0 ℃时的热失重质量达到11.99%,从图2中可以看出,纤维的热失重范围主要集中在100~400 ℃,这都说明改性后纤维的热稳定性得到了减低,所以此阶段产生的不可燃性物质,有利于阻燃,提高纤维的阻燃性能。

  如图3所示,400~600 ℃炭化时有质量增加波动,而在598.6 ℃时羽绒纤维的残炭质量相比原绒从26.45%变为27.30%,残炭质量有所增加,这是由于氟钛酸根离子(TiF62-)在酸性条件下与羽绒纤维中的氨基离子(NH3+)结合经水洗水解成TiOF2,热分解时生成TiOF2微粒本身不能燃烧,它与羽绒纤维混合或覆盖在羽绒纤维的表面,着火时阻止空气中氧气的充分供应,也阻止可燃性裂解气体的大量逸出,起到明显的阻燃作用,为固相阻燃机理。