您的位置:商铺首页 >> 行业资讯 >> 详情

河南TPU原料上门收购

时间:2025-08-20 01:35

  河南TPU原料上门收购

  在现代生活中,塑料制品无处不在,从日常用品到工业材料,它们为人们的生活带来了极大的便利。然而,这些塑料制品在自然环境中逐渐分解,产生了微塑料(Microplastics,MPs)—— 粒径小于 5 毫米的塑料颗粒,成为了全球关注的新兴污染物。如今,微塑料的身影几乎遍布地球的每一个角落,从广袤的海洋到深邃的海底,从大气到土壤,甚至在生物体内也频频被发现。

  大量研究证实,人类通过多种途径接触微塑料,如饮食摄入、呼吸吸入以及皮肤接触等,微塑料已在人体的多种组织和器官中被检测到,这引发了人们对其潜在健康风险的担忧。但令人疑惑的是,此前一直没有研究关注微塑料是否会进入人眼房水(aqueous humor)。人眼作为人体重要的感觉器官,其房水对于维持眼部生理平衡起着关键作用,它不仅为眼内组织提供营养,还参与调节眼压。而且,眼睛与外界环境直接接触,接触镜片等物品可能会引入微塑料,这使得微塑料进入房水的可能性增加,所以研究房水中是否存在微塑料显得尤为重要。

  式 (1) 中, qe为平衡吸附容量 (mg Cr3+·g-1) ;C0为吸附前Cr3+的浓度 (mol·L-1) ;C1为吸附后溶液中的Cr3+浓度 (mol·L-1) ;M为玉米芯用量 (g) ;V为Cr3+溶液的体积, 本实验中溶液均取用50mL。2 结果与讨论

  2.1 红外光谱分析

  接枝前后的玉米芯红外光谱见图1。在3400cm-1附近, 接枝前后玉米芯的谱图中均出现宽而强的吸收峰, 这可能是玉米芯所含的羟基 (O-H) 缔合峰。而接枝后的玉米芯在这个区域可能还存在游离的N-H伸缩振动峰。图中明显的区别在于接枝后玉米芯谱图中明显出现了甲基丙烯酸的羰基 (C=O) 的特征吸收峰 (1713cm-1) 和甲基 (CH3) 的伸缩特征峰 (2990cm-1和2933cm-1) , 而这些组特征峰在未接枝的玉米芯谱图在图1 (a) 中并未出现。此外, 接枝玉米芯的谱图中出现1664cm-1的酰胺特征峰吸收峰, 说明甲基丙烯酸 (MAA) 与丙烯酰胺 (AAm) 成功接枝到玉米芯大分子上。

  重与轻钙明显的区别就在于产品的堆积密度不同。重钙产品的堆积密度较大,一般为0.8~1.3g/cm3;而轻钙产品的堆积密度较小,多为0.5~0.7g/cm3;一些纳米碳酸钙产品的堆积密度甚至更低,可以达到0.28g/cm3左右。由产品的包装体积也可以粗略分辨出重钙和轻钙产品,一般重钙产品多为25kg/包,产品包装体积较小,而同等质量的轻钙产品包装体积明显较大,一些纳米碳酸钙产品还采用15kg/包或20kg/包的包装。惯上我们常用沉降体积来衡量碳酸钙密度的大小。沉降体积是单位质量的碳酸钙在100ml水中振荡并静置3h后所具有的体积(ml),沉降体积越大说明产品粒度越小、密度越轻、产品档次越高。

  河南TPU原料上门收购

  5 悬浮接枝纳米SiO2的悬浮接枝方法使用不多, 该方法与乳液聚合有相似之处, 反应体系主要由单体、引发剂、水和分散剂等基本组分组成。例如李晓萱等[7]采用KH-570硅烷偶联剂处理纳米SiO2, 在纳米SiO2表面引入双键, 以PVA为分散剂、BPO为引发剂, 引发甲基丙烯酸甲酯在纳米SiO2表面的接枝聚合。

  2.4.6 原位直接聚合接枝

  纳米SiO2的接枝反应目的是使纳米SiO2有机化, 降低纳米SiO2表面活化能, 这通常需要进行预处理, 工艺步骤较多。为了提高纳米SiO2的有机化效率, 有人直接采用单体在纳米SiO2表面共聚有机化纳米SiO2。但是纳米SiO2是亲水性较强的无机填料, 而大多数聚合物的亲水性较弱, 因此利用表面活性剂与纳米SiO2的氢键作用对纳米SiO2进行包覆, 改善纳米SiO2与单体的亲和性, 然后再进一步引发单体在纳米SiO2表面的接枝共聚, 使纳米SiO2更有效地被有机化[33]。原位直接共聚接枝法还可以利用白炭黑表面硅羟基与环氧基团的可反应性进行接枝[34]。

  2 热稳定性分析采用SDT Q600型热重分析仪 (美国TGA公司) , 升温速率为20℃/min, 温度从45℃升温至试样分解, 高纯氮气保护, 气体流速为150mL/min。

  1.6 玉米芯吸附性能研究

  采用在CTMAB存在下的4- (2-吡啶偶氮) -间苯二酚 (PAR) 显法测定溶液中的Cr3+浓度, 并通过下列公式计算玉米芯对Cr3+的吸附容量[2,3]: