四川PA高价上门收购
在不限制本发明的范围的前体下,本发明所描述的背景为与抗微生物和除臭相关的配方、方法和负载体系,以向软和硬表面提供抗微生物和除臭功能性涂层,材料包括纺织品、有机和无机固体介质、颗粒、多孔和无孔介质以及其他包括人和动物皮肤、皮肤损伤;用于中和人和动物产生的液体、固体废物气味,以及通过与功能性涂层接触的方式来氧化分解有害物质。
在不限制本发明的范围的前提下,通常基于通过结合配方和方法来稳定含N-卤胺的抗菌和除臭目标产品;提供用于降低基于卤素的功能性涂层目标产品的氯气味和气相腐蚀性的配方
由表1可以看出纤维在抽提后比原丝的粘结性能略有提升,这应该是纤维表面的油剂等杂质的去除而对纤维表面形成了一定的物理刻蚀作用引起的,只是这种刻蚀作用有限[26],使得表面粘结强度提升不大。TMPTMA接枝后的纤维表面粘结性能仅仅比抽提后的纤维的表面粘结性能提高了7.674%,分析认为接枝TMPTMA后的纤维表面仅仅含有酯基官能团,不能与环氧树脂之间形成有效的化学键合,仅仅提升了纤维表面的粗糙度,而接枝AA和MAA后的纤维引入了-COOH官能团,能够与环氧树脂和固化剂之间形成的化学键合而大大提升纤维粘结性能,接枝纤维IFSS比空白样品足足提升了160.9%,比传统液相接枝[12]的提升幅度(66.00%)有了明显的改进。
随着接枝方法研究的进展, 出现了原子转移自由基聚合接枝、可逆加成-断裂-链转移聚合接枝等新的接枝方法。2.1.1 原子转移自由基聚合接枝
采用ATRP法[9,10,11,12]制备纳米SiO2接枝共聚物的实施过程, 通常需要将接枝基体卤化改性得到卤化聚合物, 即需要先准备纳米SiO2引发体系的前驱体, 然后在一定温度下在催化体系的促进下接枝单体。纳米SiO2的原子转移自由基聚合接枝可以是一种单体, 比如以2-溴代丙酸乙酯为引发剂, 溴化亚铜为催化剂, 2, 2’-联吡啶为配体, 采用开放的溶液聚合体系, ATRP法实施了GMA的可控聚合[9]。纳米SiO2的原子转移自由基聚合接枝也可以是多单体共聚。例如通过原子转移自由基聚合接枝方法在纳米SiO2表面接枝苯乙烯和甲基丙烯酸甲酯的嵌段共聚物[10]。
四川PA高价上门收购
由于炭材料普遍呈现疏水性,表面活性点少,表面活性低,很难形成有效的界面结合和实现有效的承载转换,满足不同功能材料的需求,从而大地限制了其在许多领域中的应用,因此很有必要对其进行表面修饰,使其表面引入大量的性官能团,改变表面的惰性,提高在试剂中的分散能力,为其液相反应奠定基础,从而通过可控的液相反应来实现炭材料的功能化。目前,炭材料的表面改性主要采用氧化活化、接枝有机物、无机氧化物包覆、负载金属颗粒等途径。其中表面接枝[1]的方法为普遍,可控性好。另外,将有机化合物接枝到无机炭材料表面,形成接枝炭材料,兼顾了有机化合物高的化学活性和无机炭材料稳定的物化特性。因此,接枝炭材料成为目前炭材料改性研究的热点之一。
汪信等[15]在纳米SiO2表面上进行聚对苯二甲酸丁二醇酯预聚物 (pre-PBT) 接枝改性, 由于pre-PBT与PBT、PET、PC、PA等工程塑料的性与溶解度参数相似, 因而纳米SiO2表面接枝的pre-PBT可在上述工程塑料中充分伸展形成位阻层稳定层, 阻碍粒子间的碰撞团聚, 进而提高纳米粒子在工程塑料中的分散稳定性, 增强了纳米粒子与树脂基体的相容性。2.2.2 超支化接枝