福建ABS边角料回收公司
不限制本发明的范围的前提下,N-卤胺可以通过物理和/或化学结合,在协同作用下,通过聚合物负载剂固定在目标产品上。相互作用包括但不限于范德华力,配位键合,离子相互作用,氢键,交联,自由基相互作用等。换句话说,本发明提供了一种用于生产消毒除臭液、灭菌剂、氧化性涂层和介质的配方和方法,这些产品可以广泛用于生物危害控制,防止和消除气味和其它有害物质,以及抑制促使有机物质产生恶臭的生物酶。在不限制本发明的范围的前体下,功能性涂层和介质可以在储存时稳定存在,并且在使用中具有耐久性。在不限制本发明的范围的前体下,所发明的卤素稳定配方可以减少基于N-卤胺的抗微生物剂和除臭目标产品的氯气味道。在不限制本发明的范围的前体下,所发现的卤素稳定化配方可以降低源自N-卤胺的卤素导致的金属腐蚀。
随着接枝方法研究的进展, 出现了原子转移自由基聚合接枝、可逆加成-断裂-链转移聚合接枝等新的接枝方法。2.1.1 原子转移自由基聚合接枝
采用ATRP法[9,10,11,12]制备纳米SiO2接枝共聚物的实施过程, 通常需要将接枝基体卤化改性得到卤化聚合物, 即需要先准备纳米SiO2引发体系的前驱体, 然后在一定温度下在催化体系的促进下接枝单体。纳米SiO2的原子转移自由基聚合接枝可以是一种单体, 比如以2-溴代丙酸乙酯为引发剂, 溴化亚铜为催化剂, 2, 2’-联吡啶为配体, 采用开放的溶液聚合体系, ATRP法实施了GMA的可控聚合[9]。纳米SiO2的原子转移自由基聚合接枝也可以是多单体共聚。例如通过原子转移自由基聚合接枝方法在纳米SiO2表面接枝苯乙烯和甲基丙烯酸甲酯的嵌段共聚物[10]。
热分析(TG)。采用STA409PC型热失重分析仪,称取5 mg左右切碎的纤维,在氮气保护下,以10 ℃/min的升温速率从室温升至600 ℃进行检测。
(3)红外光谱(FT-IR)。
采用TENSOR37型傅立叶红外光谱仪,溴化钾压片法,分辨率为2 cm-1,扫描范围为500~4 000 cm-1进行红外分析。
(4)扫描电子显微镜(SEM)。
福建ABS边角料回收公司
2pH值的影响为比较p H值对Ni2 +去除效果的影响,作以下实验: 向含Ni2 +浓度为30 mg/L、浊度0 NTU的水样中,在不同p H条件下,投加60 mg/L的LSAM,实验结果如图2。
由图2可知,溶液的p H对絮凝剂LSAM的除镍性能有较大的影响。酸度较大时去除Ni2 +能力较弱,当p H升高时,去除率明显增大,Ni2 +的佳p H为7. 0,去除率达到98. 2% ,水样p H大于8. 0后除镍率均有所降低,但是仍旧保持着较高去除率,均大于95% 。其原因在于[5]: 一方面p H对LSAM在水溶液中的存在形态有影响,在酸性条件下,LSAM中的酰胺胺基由于被质子化以 - CONH3+形式存在,影响了氮原子的配位能力,不利于Ni2 +形成螯合物,p H升高时,平衡向右移动, 以 - CONH2的形式存在,有利于Ni2 +与其形成螯合物; 另一方面,p H升高引起水样中的Ni2 +水解,水解释放出大量的H+可平衡p H升高而引起的H+变化,且p H的升高,也导致Ni2 +本身的沉淀,从而使得在碱性p H下仍有较高的除镍率。因此, p H的升高对LSAM处理含镍废水的影响不大,所以LSAM处理含镍废水时,p H的适用范围广,对水样p H要求较低,具有良好的应用前景。
由表1可见: 镍离子的回收率随着反应时间的延长而提高,相同条件下4 mol·L- 1硝酸溶液的浸取能力较4 mol·L- 1盐酸、2 mol·L- 1硫酸溶液强一些,可能是由于硝酸氧化性较强,对絮体的破坏能力强,导致絮体中的重金属离子更容易析出,而回收率较高; 在4 mol·L- 1硝酸溶液中Ni2 +的回收率较高,由表还可以看出,LSAM - Ni中的镍离子可选用4 mol· L- 1硝酸的进行回收,回收率可达79. 7% 。