山东PA6塑料高价上门收购为应对传染性病原体、生物膜得广泛传播和普遍存在臭味问题,能够在接触时有效地灭活微生物的抗菌表面已经引起了相当大的研究兴趣。这些方法已经广泛用于生产木材、纸张、塑料、纺织品、涂料等。然而,目前市场上的相关产品基本上是将杀菌剂加入聚合物中,其主要目的是仅仅保护聚合物材料免于由微生物攻击引起的变质和变色。
目前开发的控制剂有无机酸、无机碱、有机酸(氨基酸)、醇类、糖类、蛋白质和结构的生物聚合物,例如用双亲水嵌段聚合物PEG-b-PMAA在不同浓度和不同PH值下可以分别制成菱形、花生形、长棒形、球形和哑铃形外观的碳酸,再如用树枝形聚合物聚天冬氨酸可以制成螺旋形状碳酸,又如加入阴离子右旋糖苷可以获得球形碳酸钙。重钙产品由于采用机械粉碎和分级,颗粒形态一般多为立方体、多棱体、长方体等不规则形态。对于不同的重钙加工方法,碳酸钙的微观形状不同,例如用擂蒙磨加工的碳酸钙为纺锤形,用气流磨加工的碳酸钙为颗粒形。
山东PA6塑料高价上门收购
从图1还可以看出,在700~550 cm-1出现了一个弱吸收的宽峰,由于羽绒纤维为天然蛋白质纤维,其结构复杂,基团繁多,查阅文献[11]可知,TiF62-峰出现在600~540 cm-1处,由于接枝的量很小,导致峰较小。说明金属离子接枝到羽绒纤维上。2.3 羽绒纤维改性前后热失重分析
羽绒纤维改性前后热失重曲线,见图2、图3所示。
由图2、图3可见,接枝氟钛酸钾后的羽绒纤维第二阶段热裂解起始温度由原绒的258.1 ℃变为238.8 ℃,快热失重温度从334.3 ℃降低至320.1 ℃左右,快热失重速率从5.45%/min降至5.17%/min,纤维的热失重温度范围变窄,而且明显提前,说明纤维的整体热稳定性降低,这是由于此阶段的分解主要是纤维上的氟钛酸钾的裂解,并伴随纤维本体自身的裂解,并且氟钛酸钾对羽绒纤维的热分解起到了催化作用。另外,在此阶段的裂解过程中,纤维在187.2~250.0 ℃时的热失重质量达到11.99%,从图2中可以看出,纤维的热失重范围主要集中在100~400 ℃,这都说明改性后纤维的热稳定性得到了减低,所以此阶段产生的不可燃性物质,有利于阻燃,提高纤维的阻燃性能。
接枝MAA和AA后纤维的亲水性能如图6所示,测试方法如相关文献[27]所述,从图可看出未改性的纤维曲线在毛细效应平衡后,吸水量为负值,这是由于聚乙烯的疏水性引起的排斥力造成的,而接枝后的纤维无论是接枝了AA还是接枝了MAA的纤维均为正值,亲水性能大为提升。正常浸润段浸润增重m与浸润时间t的拟合关系曲线(图7)符合下列公式:
m2 = wundefinedσ1 cosθ/(H2η1 wf Ap ρf )t (2)