详细说明
构建大数据环境下的关联分析模型,研究跨行业、跨领域的电力市场运营分析算法,挖掘电力市场的数据规律与价值。立足于中国电力市场实际情况、特点和需要,从市场供需、结构、市场行为、安全约束、外部市场等多方面提出影响电力市场运营分指标因素,建立多源异构环境下的电力市场建设与运营指标体系,综合多维地分析和评价电力市场运行情况。基于大数据的多能流市场化交易应用。利用大数据、云计算、AI等新技术开展能量信息实时监测、数据分析和优化处理,提供各类能源交易全流程数据支撑,实现源网荷储资源的各环节高度协调,生产和消费双向互动。基于大数据的多能流市场化交易应用,在能源生产端结合实时气象数据、厂站运行状态数据等,应用大数据建模开展需求响应预测、发电量模拟、交易策略推演等应用。在能源消费端利用大数据技术将气象信息、用户作息规律、宏观经济指标等数据,通过抽象的量化指标表征与负荷之间的关系,实现对负荷变化趋势的精确感知,达到供需匹配灵活的目的。05结语当前电力市场大数据应用应结合大流量、多维尺度的数据形态和趋势特征,构建适应广域数据来源的集成传输、分析处理以及数据展现的技术体系,大数据应用设计需统筹考虑业务中台与AI技术在电力市场应用的未来方向,可以采取云计算+中台模式设计架构融合的总体可执行框架。本文分析构建了市场主体用户画像分析、信息精准推送和征信评估与分析等业务应用模型,对降低信息不对称的市场效率负面影响和电力市场信用风险管理等工作提供了新思路、新方法,为大数据技术在电力市场的进一步实践提供了借鉴。原标题:北京电力交易中心 刘永辉,张显等:能源互联网背景下电力市场大数据应用探讨免责声明:以上内容转载自北极星电力新闻网,所发内容不代表本平台立场。 数据以CSV格式存储,文件名规则:河名_站号_超警次数, 数据集,每一行一条记录,逗号分隔分别是:站号,时间,水位,警戒水位,警戒水位与水位的差值,按时间进行排序。 三. 建模思路 建立模型:指数合成方法:以统计期的数据合成指数构建权重,把每个监测点数据进行加权平均,形成河流指数。指数与站号的关系:通过相关性分析,计算每个站对于河流指数的影响程度。投影得分:把指数具体数值,投影到固定的取值区间,形成得分。 指数合成原则:水位变化越大,权重越大水位与警戒水位的差值越大,权重越大,大于0时为超警时间越近,权重越大 投影得分:以0米为100分,表示已经警戒水位。以-5米为60分,表示正常水位。以-10米为10分,表示河流干涸。大于100分,则可能要发大水。小于10分,则可能河流无水。 3.1 A江 以A江的5个监测站进行指数合成。 指数取值:最小值1/4位数中位数平均值3/4位数最大值-7.218-5.423-5.118-5.134-4.843-1.481 X轴:指数取值 Y轴:频次 A江5个站:A黑,B红,C绿,D深蓝, E浅蓝 指数:IDN紫色 X轴为:时间,从2015-11到2019-03。 Y轴为:警戒水位与水位的差值,大于0值为超警。 每个站点对整个河流的影响 A站(黑):1.2594088 B站(红):0.1961849 C站(绿): 0.1455854 D站(深蓝):1.4004896 E站(浅蓝):0.5610354 数值1为基准,大于1时,监测站对指数影响明显,小于1时对指数形象不明显。 结论:A站和D站河流影响比较大,如果A值或D值水位突然变化,那么河流会比较危险。 3.2 B江 以B江的6个监测站进行指数合成。 指数取值:最小值1/4位数中位数平均值3/4位数最大值-13.201-12.362-11.611-10.824-10.1212.607 B江6个站:A黑,B红,C绿,D深蓝, E浅蓝(干流水道),F紫色(干流水道) 指数:IDN黄色 X轴为:时间,从2015-11到2019-03。 Y轴为:警戒水位与水位的差值,大于0值为超警。 每个站点对整个河流的影响 A站(黑):1.4582460 B站(红):0.9518856 C站(绿): 1.0676259 D站(深蓝):0.5472059 E站(浅蓝):0.3465968 F站(紫色):0.2251052 数值1为基准,大于1时,监测站对指数影响明显,小于1时对指数形象不明显。 结论:A站和C站河流影响比较大,如果A值或C值水位突然变化,那么河流会比较危险。 该模型是我们探索性的尝试。用金融的方法去解决水利问题。这种尝试是知识迁移:把一个行业的知识迁移到另外一个行业去尝试解决问题。这种尝试有很大的创新性。后续我们会持续把金融行业的知识,迁移到水利行业和其他行业,希望做出突破性的变革和实际落地效果。 我们公司致力于解决这类跨行业的问题。我们公司具备跨学科知识能力,特别是在:国际贸易,进出口领域,区块链,金融及量化投资领域。我们具备扎实的底层知识构建能力。同时也有能力去把底层的知识在在我们擅长的领域做到极致,并同时在其他行业里做迁移。我们致力于把数据分析和数据科学在每个重要的,和国家生息相关的每个行业的进行落地。希望通过这个水利尝试案例,能让大家领略到数据分析,数据科学的无限魅力。 流网络规划中的场景构建,以及用变量、决策变量、约束条件等数学语言将其抽象为数学问题,建立规划模型,并求解得到最优的规划方案。构建场景可以将案例A的场景简化为工厂(生产端)到仓库(DC层)、以及仓库到客户(需求端)的物流网络。这一网络,大致可以分为生产端,DC层和需求端,如下图。DC层所涉及的仓库选址、库存布局、运输路线的优化非常重要,不仅能优化企业的成本,在客户服务水平、订单响应时间等方面也能得到很大的提升。该物流网络的场景结构及特征可以从层级节点、仓库备选点、供需分布、运输、库存、仓储等六个维度来构建和描述。一、层级、节点 在网络中,首层共有j个工厂,末层有k个客户,其他层级为DC层。DC层共有s个层级,包含i个节点(仓库),网络规划就是通过模型来确定DC层的层级以及各层级中的仓库数量。1、构建变量可以用工厂点集合、仓库点集合、客户点集合、仓库层级、仓库数量等变量来描述网络的层级、节点。2、变量输入下图是案例A的DC层的现状分布情况,包括一级配送中心布局、二级配送中心布局。(通过自主开发的数字化物流规划平台模拟得出)3、 优化对比下图是案例A的优化后的网络结构。(通过自主开发的数字化物流规划平台模拟得出)二、仓库备选点 仓库备选点是一个离散的备选位置的集合,数量通常非常有限,而该备选方案集中的任何一个节点都是可行解,是事先经过合理分析的,包括分析经济因素、自然因素、社会因素等等。