大同原理培训模型核能电厂设备模型员工培训

名称:大同原理培训模型核能电厂设备模型员工培训

供应商:湖南双智模型制造有限公司

价格:面议

最小起订量:1/套

地址:湖南省长沙浏阳关口工业园

手机:15173188998

联系人:晏才荣 (请说在中科商务网上看到)

产品编号:202254019

更新时间:2023-05-16

发布者IP:114.232.177.72

详细说明

  水电站的装机容量主要取决于水头和流量的大小。山区河流的特点是流量不大,但天然河道的落差一般较大,这样,发电水头可通过修造引水明渠或引水隧洞来取得,适合于修建引水式水电站水电站模型水利枢纽模型 三峡大坝水电站 三峡众所周知是拦河大坝为混凝土重力坝,坝轴线全长2309.47米,坝顶高程185米,最大坝高181米。泄洪坝段位于河床中部,前缘总长483米,设有22个表孔和23个泄洪深孔,其中深孔进口高程90米,孔口尺寸为7×9米;表孔孔口宽8米,溢流堰顶高程158米,表孔和深孔均采用鼻坎挑流方式进行消能。电站坝段位于泄洪坝段两侧,设有电站进水口。进水口底板高程为108米。压力输水管道为背管式,内直径12.40米,采用钢衬钢筋混凝土联合受力的结构型式。校核洪水时坝址最大下泄流量102500立方米/秒。水电站模型水利枢纽模型 水利枢纽 是为满足各项水利工程兴利除害的目标,在河流或渠道的适宜地段修建的不同类型水工建筑物的综合体。水利枢纽常以其形成的水库或主体工程——坝、水电站的名称来命名,如三峡大坝,新安江水电站,丹江霞水库,等;也有直接称水利枢纽的,如葛洲坝水利枢纽水电站模型水利枢纽模型 滚水坝其实就是低溢流堰,一种高度较低的的拦水建筑物,其主要作用为抬高上游水位、拦蓄泥砂。主要原理是将水位抬高到一定位置,当涨水时,多余的水可以自由溢流向下游。因此,除了满足取水的高程要求外,还要满足冲砂的要求。具体根据其作用、地质、水文等因素来确定规模。 工艺过程结果在这里,可以看到生物池中不同指标随时间的反应变化过程曲线。出水展示动态图在这里,可以看到最终出水结果随时间的变化,以及各项指标去除率的变化过程。运行能耗动图在这里,可以看到工艺运行能耗随时间的变化过程,图中很明显的可以看到曝气费用在蹭蹭蹭的往上涨。(不知道为啥,看到它这么涨有一种莫名的舒服)总之,你可以直接看到自己设计的工艺到底能把进水中COD、TN、TP处理到什么程度,而且是全流程!辅助运营实际污水厂在运行过程中可能会遇到各种问题,然而大家最关注的肯定是在调整各项工艺参数的时候,出水到底会怎样?要知道,出水不达标会让污水厂面临极大的损失的,那么在模型里,你能做什么?话不多说,直接上图:DO控制图修改曝气池中的DO设定值,从2mg/L降低为1mg/L这里,你可以清晰看到随着曝气池中溶解氧的降低,出水NH4在往上涨,DO如果再低一点,很可能就超过一级A标准了。内回流控制图修改内回流量的比例,从1降低为0.5在这里,你可以看到将内回流比从1降到0.5后(这里内回流比是指回流量跟进水流量的比例),出水NH4机会没有什么变化,而出水NO3-N是变高了哦,原因我不说大家应该也懂吧。投加碳源在缺氧池前端投加碳源这里,可以看到碳源的影响,即在上面出水的NO3-N的模拟过程中,我们看到出水NO3-N很高,有些时刻都超过一级A标准了(15mg/L),小编其实有模拟增大内回流。内回流增加内回流从1增大到2.7图中可以看到,内回流的增大一定程度上降低了某些时刻的出水NO3-N值,但是其他时刻基本没什么变化,初步分析是碳源不足导致,然后通过投加碳源(见前面投加碳源图),可以看到出水NO3-N的显著降低,验证了最初的分析。另外还发现,投加碳源后,出水NH4出现了波动,即存在不同大小的上升。(出现这个现象原因也是可以解释的,主要是因为碳源的投加一定程度上造成了自养菌的抑制,毕竟人家是靠无机物生存的,其实还可以在模型中去看自养菌的浓度变化,曲线存在一定程度的降低,这里就不放图了)不知道大家有没有耐心坚持看完,这里的展示的仅仅是模型中最基本的分析功能,还有很多高级工具就不说了。 运输线路对规划目标的经济性产生直接影响,运输成本主要由运输路线、运输方式决定的。 1、构建变量规划配送路线涉及的因素很多,主要因素有运输距离、运输环节、运输方式/工具、运输时间、运输费用等。2、变量输入下图是案例A中对重庆某一仓库的变量【分中心数量、运输费用、订单量、各二级配送中心运输距离】的现状的统计分析。(通过自主开发的数字化物流规划平台模拟得出) 下图是案例A对服务水平/运输周期的变量【各月份到工厂提货延误程度、各月份车辆运输延误程度、各月份车辆运输延误次数、各月份车辆运输准点次数、各月份到货延误程度】的现状分析统计结果。(通过自主开发的数字化物流规划平台模拟得出) 3、决策变量运输决策变量不仅影响运输成本,还影响着网络的服务水平(运输周期/订单响应时间)。可通过指标【各月份到工厂提货延误程度、各月份车辆运输延误程度、各月份车辆运输延误次数、各月份车辆运输准点次数、各月份到货延误程度】来评估网络的服务水平。下图是案例A对运输的决策变量的优化结果。(通过自主开发的数字化物流规划平台模拟得出) 4、目标函数运输成本主要包括了三个部分,一部分为工厂到仓库,一部分为仓库之间的运输,另外一部分为仓库到客户,不同部分的运输方式可能不一样。5、优化对比下图是案例A中的【一级到二级的配送路线】的优化前后的对比。(通过自主开发的数字化物流规划平台模拟得出)五、库存 库存规划对规划目标的经济性产生直接影响,包括库存的分布、库存策略、库存水平的规划等等。库存的规划是以网络结构和供需分布的特征为基础。1、决策变量库存的决策变量主要包括【一级配送中心安全库存水平(SS)、订货周期内的周转库存、一级配送中心再订货点、经济订货批量(EOQ)】。2、目标函数3、优化对比下图是案例A中库存决策变量【一级配送中心安全库存水平(SS)、订货周期内的周转库存、一级配送中心再订货点、经济订货批量(EOQ)】的优化前后的对比。(通过自主开发的数字化物流规划平台模拟得出)六、仓储 仓储成本主要指与仓库建设/租赁、管理运营相关的成本,如人员成本、仓库租金、设备成本、能耗成本。1、构建变量仓储成本的计算是建立在费用函数与费率的基础上的,如租赁成本、库存持有成本、产品成本等。2、变量输入下图是案例A中,对变量【各一级配送中心人员成本、各一级配送中心仓库租金、各一级配送中心设备成本、各一级配送中心能耗成本】的现状情况的统计分析。(通过自主开发的数字化物流规划平台模拟得出) 3、决策变量在备选仓库集合中确定出被选中仓库。这将影响前述的各项变量,包括【各一级配送中心人员成本、各一级配送中心仓库租金、各一级配送中心设备成本、各一级配送中心能耗成本】。4、目标函数仓储中心的成本主要由固有建设成本,人员成本以及其他设备或能耗成本够成。相对来说比较固定。其中可以通过人员数量和人员的平均成本计算出其中的人员成本。5、 模型求解 由于货物品种多、网络层次结构复杂、可供选择的节点数目大,其中任何一个环节或因素发生变动都会对模型求解结果造成影响。在不同的约束条件下,对同一问题求解,可能得出不同的结果,包括仓库的类型、位置、数量和处理能力等等。因此,此处增加一些约束和假设条件。 假设条件:1)系统总成本只考虑主要的成本费用,细节或小费用成本暂不考虑。2)不考虑缺货成本。3)库存策略采用不允许缺货的批量订货策略。根据上面的各个部分的结果,得到总的目标:在备选点均已知,在每个物流中心都无能力限制,需求点和需求量以及所需设置的物流设施(仓库)的数目均确定的情况下,规划总费用最小的多个物流中心构建的物流系统。 对上述模型可以采用逐次逼近法求解,首先给出一个的初始解,然后进行迭代计算来逐步改善所得解,最后使其接近费用最小。它的优点是计算过程比较简单,能评价网络中的各项主要费用,能通过求解物流中心的流通量来确定物流中心的规模,同时可以根据物流中心需求的特点,采取不同的备货策略。6、 成本优化对比 下图是案例A的各项成本决策变量的优化前后的对比。(通过自主开发的数字化物流规划平台模拟得出) 给出优化前的目标函数(成本)计算结果,以及优化后的网络结构、成本结果。在模型输出结果的基础上,我们可以结合企业的运作特点,建立方案的评价指标体系,从客户、物流、成本等多个维度的进行整体评估,从而得到定性和定量最优的方案。