南京科技展览模型管式加热炉模型平衡重式叉

名称:南京科技展览模型管式加热炉模型平衡重式叉

供应商:湖南双智模型制造有限公司

价格:面议

最小起订量:1/套

地址:湖南省长沙浏阳关口工业园

手机:15173188998

联系人:晏才荣 (请说在中科商务网上看到)

产品编号:193132700

更新时间:2022-08-02

发布者IP:114.232.177.72

详细说明

  水利部印发了水利业务四预功能基本技术要求,加快构建2+N业务体系的四预功能智能业务应用,助力我国智慧化水利建设。据此,整个中国智慧水利的建设逻辑基本阐明,先建设数字孪生流域/水利工程,再构建四预业务应用体系,最终建成我国的全面智慧水利。水利业务四预功能技术架构图(水利部)1.四预的内容四预过程包括预报-预警-预演-预演,预报则对降水、水位、流量、径流量、地下水位、墒情、泥沙、冰清、水质、淹没影响等水安全要素进行预测预报;预警则对江河洪水、山洪灾害、城市内涝、工程灾害、干旱灾害、供水危机、水生态环境危害等水利灾害风险进行预警;预演则对流域防洪调度、水资源管理调配、水工程调度运用、突发水污染事件处置、水生态过程调节等水利调度应用方案进行预演;预案则对预演生成的众多方案进行影响评估并进行优化,结合救援与人员物资保障体系,确定最优预案。在这四个过程中,基于自然水科学的数值模型(简称水科学模型)扮演着至关重要的作用。2.水科学模型在预报中扮演的角色?水情预报是一个行政行为,但背后需要科学技术的精准支撑,而水科学模型就扮演着此角色,它能定量的给出不同预报对象的水安全要素值,并且给出具体的经纬度坐标范围,辅助水情预报员开展作业预报。目前国内开展的预报对象包括水文站、水库、闸坝、河道断面、蓄滞洪区、湖泊、海岸、城市乡镇等,预报要素包括降水、水位、水质、流量、径流量、淹没范围、泥沙、富营养化、水华等指标,结合气象预报和监测数据,可开展不同时间周期的预报。例如,将降雨数据、产汇流模型、一维水动力模型耦合使用,通过对降雨-产流-坡面汇流-河道汇流的全过程计算,可以获得流域或区域内任意河道断面的水情数据(水位、流量、洪峰、洪峰量、径流量等),如果在河道中叠加泥沙输运模型和水质模型,可以进行含沙量、氮磷、需氧量等物理量的预测预报。预报的周期主要由降雨数据的提前获得时间决定,目前降雨数据获得的手段包括降雨数值预报模型。 数据以CSV格式存储,文件名规则:河名_站号_超警次数, 数据集,每一行一条记录,逗号分隔分别是:站号,时间,水位,警戒水位,警戒水位与水位的差值,按时间进行排序。 三. 建模思路 建立模型:指数合成方法:以统计期的数据合成指数构建权重,把每个监测点数据进行加权平均,形成河流指数。指数与站号的关系:通过相关性分析,计算每个站对于河流指数的影响程度。投影得分:把指数具体数值,投影到固定的取值区间,形成得分。 指数合成原则:水位变化越大,权重越大水位与警戒水位的差值越大,权重越大,大于0时为超警时间越近,权重越大 投影得分:以0米为100分,表示已经警戒水位。以-5米为60分,表示正常水位。以-10米为10分,表示河流干涸。大于100分,则可能要发大水。小于10分,则可能河流无水。 3.1 A江 以A江的5个监测站进行指数合成。 指数取值:最小值1/4位数中位数平均值3/4位数最大值-7.218-5.423-5.118-5.134-4.843-1.481 X轴:指数取值 Y轴:频次 A江5个站:A黑,B红,C绿,D深蓝, E浅蓝 指数:IDN紫色 X轴为:时间,从2015-11到2019-03。 Y轴为:警戒水位与水位的差值,大于0值为超警。 每个站点对整个河流的影响 A站(黑):1.2594088 B站(红):0.1961849 C站(绿): 0.1455854 D站(深蓝):1.4004896 E站(浅蓝):0.5610354 数值1为基准,大于1时,监测站对指数影响明显,小于1时对指数形象不明显。 结论:A站和D站河流影响比较大,如果A值或D值水位突然变化,那么河流会比较危险。 3.2 B江 以B江的6个监测站进行指数合成。 指数取值:最小值1/4位数中位数平均值3/4位数最大值-13.201-12.362-11.611-10.824-10.1212.607 B江6个站:A黑,B红,C绿,D深蓝, E浅蓝(干流水道),F紫色(干流水道) 指数:IDN黄色 X轴为:时间,从2015-11到2019-03。 Y轴为:警戒水位与水位的差值,大于0值为超警。 每个站点对整个河流的影响 A站(黑):1.4582460 B站(红):0.9518856 C站(绿): 1.0676259 D站(深蓝):0.5472059 E站(浅蓝):0.3465968 F站(紫色):0.2251052 数值1为基准,大于1时,监测站对指数影响明显,小于1时对指数形象不明显。 结论:A站和C站河流影响比较大,如果A值或C值水位突然变化,那么河流会比较危险。 该模型是我们探索性的尝试。用金融的方法去解决水利问题。这种尝试是知识迁移:把一个行业的知识迁移到另外一个行业去尝试解决问题。这种尝试有很大的创新性。后续我们会持续把金融行业的知识,迁移到水利行业和其他行业,希望做出突破性的变革和实际落地效果。 我们公司致力于解决这类跨行业的问题。我们公司具备跨学科知识能力,特别是在:国际贸易,进出口领域,区块链,金融及量化投资领域。我们具备扎实的底层知识构建能力。同时也有能力去把底层的知识在在我们擅长的领域做到极致,并同时在其他行业里做迁移。我们致力于把数据分析和数据科学在每个重要的,和国家生息相关的每个行业的进行落地。希望通过这个水利尝试案例,能让大家领略到数据分析,数据科学的无限魅力。 由于模型规格和整体协调的效果等因素,又为了达到良好的演示效果和便于学员观察。在保持坝体一定高度的情况下,其长度则进行了压缩,主要减少各坝段的长度,因此,各泄洪孔、冲沙孔、机组数量等都作相应的减少。详细长度如下:右岸非溢流坝:;电站坝段:;纵向围堰段:;表孔泄洪坝段;导流墙段;左厂房坝段;左非溢流坝。⑥:建坝处主河床底宽.四、制作材料说明本模型主要分为三部分分别为,台座、地形、坝体制作。台座地形部分采用38*25*2的方管,以约为600*600(具体数据根据地细木工板接缝位置来确定)的间距焊接成田字格,上方有地形部分制作等高支撑杆支撑地形,经打磨抛光后形成和山体配套的底座,地形安装后可以满足人在地形上行走。周围楼梯间用方钢管焊接成型后细木工板基地上面铺大理石,栏杆采用不锈钢管制作,看台可以满足150人以上同时参观学习。地形采用翻模制作,采用新型模型材料。坝体制作主要用ABS板和合金材料制作。