ZR-EX-HS200-FFRP2*2*0.75补偿电缆以十分低的频率f1起动电机,然后加速达到频率f2,此时负载还包括转子惯量J,此为加速惯量,需要必要的惯量加速转矩Tα,因此这两个转矩(TL+Tα)的合成转矩成为起动到转速频率f2时所必须的转矩。此时的加速转矩为下面步进电机运动方式的项:上式的D为速度比例系数,第二项因此比其他项小而忽略不计。TM为步进电机产生的电磁转矩,(TM-TL)如图上图所示,能产生加速度的转矩。速度到达f2后按设定的转速旋转一段时间,然后减速到f1,形成速度包络线,此时的减速运转称为减速驱动,此种速度曲线称为梯形驱动。
额定电压0.6/1kV及 以下聚氯绝缘电力电缆 GB/T 12706-2002
一、适用范围 本产品适用于固定敷设在交流50Hz额定电压为0.6/1kV的输配电网或工业装置使用。适宜敷设在车站、化工、石油平台、矿上、电站、高层建筑等固定场所。
二、使用特性
1、导体长期允许工作温度应不超过70℃,短路时(最长持续时间不超过5S)电缆导体的温度:截面≤300为160℃,截面>300为140℃。
2 、敷设电缆时的环境温度应不低于0℃,其弯曲半径15D(多芯电缆)和20D(单芯电缆),D:电缆实际外径。
3、一根或二根单芯电缆不允许敷设在铁层管道中。
三、型号及规格 1、电缆的型号、名称及主要用途见表1 表1 电缆的型号及名称
型 号 名 称 主 要 用 途
VV VLV 聚氯绝缘聚氯护套电力电缆 敷设在室内、隧道内、管道中电缆不能受机械外力作用
VV22 VLV22 聚氯绝缘钢带铠装聚氯护套电力电缆 敷设在地下,电缆能承受一定机械外力作用,但不能承受大的拉力
VV32 VLV32 聚氯绝缘聚细钢丝铠装聚氯护套电力电缆 敷设在水中,电缆能承受相当的拉力
2、电缆芯数及截面范围见表2 表2
型 号 芯 数 标称截面mm2
铜芯 铝芯 铜 铝
VV VLV 1 1.5~630 2.5~800
VV VV22 VV32 VLV VLV22 VV32 2 1.5~630 1.5~500 2.5~800 2.5~630
VV VV22 VV32 VLV VLV22 VV32 3 1.5~500 1.5~500 2.5~630 2.5~630
VV VV22 VV32 VLV VLV22 VV32 3+1 1.5~500 1.5~500 2.5~500 2.5~500
VV VV22 VV32 VLV VLV22 VV32 4 1.5~400 2.5~400
VV VV22 VV32 VLV VLV22 VV32 3+2、4+1 1.5~400 2.5~400
VV VV22 VV32 VLV VLV22 VV32 5 1.5~300 2.5~400
ZR-EX-HS200-FFRP2*2*0.75补偿电缆SB3的按钮开关常开点串KM△的线圈常闭点串KMY的线圈。这个是带延时继电器的星三角带延时继电器的星三角更加方便,接线和上图的手动控制类似,只不过把按钮开关换成了延时继电器。按钮开关SB2按下去以后KM1自锁,同时延时继电器的线圈得电启动,延时继电器KT常闭点串KM2线圈,KT常开点串KM3线圈,延时时间到了以后KM3自锁。KM3的辅助常闭点串延时继电器的线圈,所以启动完成后,延时继电器也会断电。控制电机正反转完整接线这个电路用的非常多,其实就是接触器自锁和互锁的结合应用。
3、四芯电缆的第四芯(中性线芯)的截面见表3 表3
标称截面mm2
主线芯 中性线芯 主线芯 中性线芯
4 2.5 95 50
6 4 120,150 70
10 6 185 95
16 10 240 120
25,35 16 300 150
50 25 400 185
70 35
四、主要技术性能
1、单芯电缆的线芯为圆形,多芯电缆线芯截面为35mm2及以下者其线芯应为圆形、扇形或半圆形,线芯截面在50mm2及以上者应为扇形或半圆形,四芯电缆中第四芯(中性线芯)可为圆形或扇形。16mm2及以下者允许由单根导线构成,25mm2及以上者应由多根单线组成。扇形或半圆形线芯,如由多根单线构成时,应当紧压。
2、多芯电缆的绝缘线芯分色见表4 表4
芯 数 线 芯 颜 色
主线芯 中性线芯 地线
2 3 4 3+2 4+1 5 红 红、黄、绿 红、黄、绿 红、黄、绿 红、黄、绿 红、黄、绿 浅蓝 - 浅蓝 浅蓝 浅蓝 浅蓝 - - - 黑 黑 黑
ZR-EX-HS200-FFRP2*2*0.75补偿电缆我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗,比如大功率开关电源,由于电流过大所以需要使用电流互感线圈来监测电流以减少损耗。电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。