南平正规回收废钼厂商地址
1 编制目的
为贯彻落实《中华人民共和国土壤污染防治法》,指导和规范土壤污染重点监管单位开展土壤环境自行监测工作,制定本指南。
2 适用范围
本指南适用于指导土壤污染重点监管单位中工矿企业开展土壤及地下水自行监测工作,生活垃圾填埋场等其他行业按照GB16889等有关标准执行。重点单位的划分以陕西省生态发布的土壤污染重点监管单位名录为准。
3 规范性引用文件
本指南内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本指南。
GB 36600 土壤环境质量 建设用地土壤污染风险管控标准(试行)
GB16889 生活垃圾填埋场污染控制标准
GB 50021 岩土工程勘察规范
GB/T 14848 地下水质量标准
GB/T 4754 国民经济行业分类
HJ 682 建设用地土壤污染风险管控和修复术语
HJ 25.1 建设用地土壤污染状况调查技术导则
HJ 25.2 建设用地土壤污染风险管控和修复监测技术导则
HJ 25.3 建设用地土壤污染风险评估技术导则
HJ 819 排污单位自行监测技术指南总则
HJ 164 地下水环境监测技术规范
HJ/T 166 土壤环境监测技术规范
4 术语和定义
下列术语和定义适用于本指南。
4.1 土壤 soil
土壤是指由矿物质、有机质、水、空气及生物有机体组成的地球陆地表面的疏松层。
4.2 地下水 groundwater
地下水是指以各种形式埋藏在地壳空隙中的水,含包气带和饱和带中的水。
4.3 自行监测 self-monitoring
指排污单位为掌握本单位的污染物排放状况及其对周边环境质量的影响等情况,按照相关法律法规和技术规范,组织开展的环境监测活动。
4.4建设用地land for construction
建设用地是指建造建筑物、构筑物的土地,包括城乡住宅和公共设施用地、工矿用地、交通水利设施用地、旅游用地、军事设施用地等。4.5 重点区域 suspected areas of contamination
具有土壤或地下水污染隐患的区域,如有毒有害物质的生产区,原材料或固体废物的堆存区、储放区和转运区等。
4.6 重点设施 key facilities
具有土壤或地下水污染隐患的设施,如涉及贮存或运输有毒有害物质的罐槽、管线等。
4.7 关注污染物 contaminants of concern
根据地块污染特征、相关标准规范要求和地块利益相关方意见,确定需要进行土壤污染状况调查和土壤污染风险评估的污染物。5 自行监测的一般要求
5.1 制定监测方案
重点监管单位应识别本单位存在土壤及地下水污染隐患的区域或设施并确定其对应的关注污染物,制定自行监测方案。监测方案应包括下列内容:单位基本情况、监测点位及示意图、监测、执行标准及其限值、监测频次、采样和样品保存方法、监测分析方法、质量与质量控制等(监测方案大纲见附录A)。
5.2 开展自行监测
重点监管单位应根据本指南要求,依据自行监测方案,自行或委托第三方开展土壤和地下水自行监测工作。
原则上对于地下水埋藏条件不适宜开展地下水监测的单位或者同时满足下述条件的单位可暂不开展地下水监测:
(1)含水层埋深大于15 m;
(2)关注污染物中不存在易迁移的污染物(如六价铬、氯代烃、石油烃、苯系物等);
(3)土层参照《岩土工程勘察规范》(GB 50021)分类方法归类为粉土及黏性土等低渗透性土壤;
(4)企业周边1 km范围内无饮用水源地保护区、补给区等地下水敏感区域。
5.3 建设并维护监测井(点)
重点监管单位应按照相关监测规范要求建设满足开展监测所需要的监测井(点),并进行维护。
5.4 记录、保存监测数据,依法公开监测结果
重点监管单位应记录和保存监测数据、分析监测结果,编制年度监测报告,并依法向社会公开监测结果。
6 监测方案制定
6.1 重点设施及区域识别
6.1.1 资料搜集
搜集的资料主要包括单位基本信息、单位内各区域及设施信息、迁移途径信息、敏感受体信息、地块已有的环境调查与监测信息等(具体见表6-1)。
表6-1 应搜集的资料清单
6.1.2 重点设施及区域识别
对本章6.1.1节调查过程和结果进行分析、总结和评价。根据各设施信息、关注污染物类型、污染物在土壤和地下水中的迁移转化途径等,识别单位内部存在土壤及地下水污染隐患的重点设施,在单位平面布置图中标记,按照附录B所示格式填写信息记录表,记录重点设施相关信息。
重点设施数量较多的单位可根据重点设施在单位的分布情况,将排放污染物类似且相距较近的多个设施,合并作为一个重点区域,在单位平面布置图中标记。
具有土壤或地下水污染隐患的设施包括但不限于:
1)涉及有毒有害物质的生产区或生产设施;
2)涉及有毒有害物质的原辅材料、产品、固体废物等的贮存或堆放区;
3)涉及有毒有害物质的原辅材料、产品、固体废物等的转运、传送或装卸区;
4)贮存或运输有毒有害物质的各类罐槽或管线;
5)三废(废气、废水、固体废物)处理处置或排放区。
6.2 监测点位布设
6.2.1 点位布设原则
重点监管单位自行监测点/监测井应布设在重点设施周边并尽量接近重点设施。重点设施数量较多的单位可根据重点区域内部重点设施的分布情况,统筹规划重点区域内部自行监测点/监测井的布设,布设位置应尽量接近重点区域内污染隐患较大的重点设施。
监测点/监测井的布设应遵循不影响单位正常生产、不造成隐患与二次污染且利于监测的原则。
纳入重点行业企业用地调查的单位点位布设可按重点行业企业用地调查确定的监测点位开展监测。
6.2.2 对照监测点
应在重点监管单位外部区域或单位内远离各重点设施(区域)处布设至少1个土壤及地下水对照点。对照点应不受单位生产过程影响且可以代表单位所在区域的土壤及地下水本底值。
土壤监测对照点应设置于重点设施(区域)污染物迁移的上游,原则上在重点监管单位边界30m范围内布设。
地下水对照点应设置在重点设施(区域)地下水径流的上游区域。地下水对照点监测井应与污染物监测井设置在同一含水层。
6.2.3 土壤监测点位布设
重点监管单位自行监测遵循以下原则确定土壤监测点的数量、位置及深度:
(1)点位数量及位置
每个重点设施周边应至少布设1-2个土壤监测点,每个重点区域周边至少布设2-3个土壤监测点。监测点具体数量可根据待监测区域大小等实际情况进行适当调整。
(2)采样深度
土壤监测应以表层土壤(0-20 cm)为重点采样层,开展采样工作。存在液体污染物的重点设施(区域)周边点位应采集不同深度的土壤样品。
6.2.4 地下水监测井的布设
重点监管单位自行监测应设置地下水监测井开展地下水监测工作,并按照《地下水环境监测技术规范》(HJ 164)中4.3.3要求确定监测井数量和位置。单位内或邻近区域内现有的地下水监测井,如果符合本指南要求,可以作为地下水对照井或污染物监测井。
采样深度按以下原则确定:
监测井在垂直方向的深度应充分考虑季节性的水位波动,并根据污染物性质、含水层厚度以及地层情况确定。
1)污染物性质
① 当关注污染物为低密度污染物时,监测井进水口应穿过潜水面以能够采集到含水层顶部水样;
② 当关注污染物为高密度污染物时,监测井进水口应设在隔水层,含水层的底部或者附近;
③ 如果低密度和高密度污染物同时存在,则设置监测井时应考虑在不同深度采样的需求。
2)含水层厚度
① 厚度小于6 m的含水层,可不分层采样;
② 厚度大于6 m的含水层,原则上应分上中下三层进行采样。
3)地层情况
地下水监测以浅层地下水为主,如浅层地下水已被污染且下游存在地下水饮用水源地,需增加主开采层的监测点。
6.3 监测项目
重点监管单位应根据本指南6.1“重点区域及设施识别”结果,参照附录C中单位所属行业类型及关注污染物,选择确定每个重点区域或设施需监测的关注污染物类别及项目(需测试每个重点设施或重点区域涉及的关注污染物,不同设施或区域的分析测试项目可以不同)。本指南未提及其所属行业的单位,应根据单位具体情况,在附表C-1“常见关注污染物类别及项目”中自行选择分析测试项目。原则上每个重点区域或设施应监测的污染物项目不少于2项。
对于以下项目,重点监管单位应在自行监测方案中说明原因:
1)在附表C-2中有列举,但单位认为不需监测的行业关注污染物项目;
2)在附表C-2中未提及单位所属行业,由单位自行选择的关注污染物项目。
不能说明原因或理由不充分的,应对所列类别污染物进行分析测试。
6.4 监测频次
重点监管单位每年至少开展一次土壤监测和一次地下水监测,地下水监测应在枯水期开展。
6.5 地下水监测井的建设与维护
6.5.1 监测井的建设
重点监管单位地下水采样井应建成长期监测井。监测井的建设过程可参照《地下水环境监测技术规范》(HJ 164)的要求进行。
6.5.2监测井井口的保护
为保护监测井,应建设监测井井口保护装置,包括井口保护筒、井台或井盖等部分。监测井保护装置应坚固耐用、不易被破坏。
井口保护筒宜使用不锈钢材质;井盖需加异型锁;依据井管直径,可采用内径为 24 cm~30 cm、高为50 cm的保护筒,保护筒下部应埋入水泥平台中 10 cm 固定;水泥平台为厚 15 cm,边长 50 cm~100 cm的正方形平台,水泥平台四角须磨圆。
无条件设置水泥平台的监测井可考虑使用与地面水平的井盖式保护装置。
6.5.3 监测井的维护和管理
应指派专人对监测井的设施进行经常性维护,设施一经损坏,及时修复。
地下水监测井每年测量井深一次,当监测井内淤积物淤没滤水管,应及时清淤。
每2年对监测井进行一次透水灵敏度试验。当向井内注入灌水段 1 m 井管容积的水量,水位复原时间超过 15 min 时,应进行洗井。
井口固定点标志和孔口保护帽等发生移位或损坏时,及时修复。
7 样品采集、保存、流转及分析测试技术
7.1 样品采集
7.1.1 土壤样品采集
土壤样品采集方法参照《场地环境监测技术导则》(HJ 25.2)的要求进行。
7.1.2 地下水采样
地下水监测参照《地下水环境监测技术规范》(HJ 164)的要求进行。
7.2 样品保存
样品保存涉及采样现场样品保存、样品暂存保存和样品流转保存要求,样品保存应遵循以下原则进行:
a)土壤样品保存参照《土壤环境监测技术规范》(HJ/T 166)的要求进行;
b)地下水样品保存参照《地下水环境监测技术规范》(HJ 164)的要求进行;
c)监测单位应与检测实验室沟通确定样品保存方法及保存时限要求;
d)现场样品保存。采样现场需配备样品保温箱或其他设施,样品采集后在4 ℃低温保存;
e)样品暂存保存。如果样品采集当天不能将样品寄送至实验室进行检测,样品需在4 ℃低温保存;
f)样品流转保存。样品寄送到实验室的流转过程要求在4 ℃低温保存流转。
7.3 样品流转
7.3.1 装运前核对
在采样小组分工中应明确现场核对负责人,装运前应进行样品清点核对,逐件与采样记录单进行核对,保存核对记录,核对无误后分类装箱。如果样品清点结果与采样记录有不同,应及时查明原因,并进行说明。
样品装运同时需填写样品运送单,明确样品名称、采样时间、样品介质、检测、检测方法、样品寄送人等信息。
7.3.2 样品流转
样品流转运输的基本要求是样品和及时送达。样品应在保存时限内尽快运送至检测实验室。运输过程中要有样品箱并做好适当的减震隔离,严防破损、混淆或沾污。
7.3.3 样品交接
实验室样品接收人员应确认样品的保存条件和保存方式是否符合要求。收样实验室应清点核实样品数量,并在样品交接单上签字确认。
7.4 样品分析测试
样品的分析测试方法应优先选用国家或行业标准分析方法,尚无国家或行业标准分析方法的监测项目,可选用行业统一分析方法或行业规范。
8 质量及质量控制
重点监管单位自行监测过程的质量及质量控制,除应严格按照本指南的技术要求开展工作外,还应严格遵守所使用检测方法及所在实验室的质量控制要求。
重点监管单位利用自有人员、场所和设备自行监测的应按照排污单位自行监测技术指南总则(HJ 819)中“监测质量与质量控制”的要求执行。相应的质控报告应作为样品检测报告的技术附件。
委托开展自行监测的企业,应委托具有中国计量认(CMA)资质的检测机构进行。
9 结果分析及报告
9.1 监测结果分析
重点监管单位应根据本指南要求开展自行监测并对监测结果进行分析,以下情况可说明所监测重点设施或重点区域已存在污染迹象:
a)关注污染物浓度超过相应标准中与其用地性质或所属区域相对应的浓度限值的(各监测对象限值标准按照表9-1执行);
b)关注污染物的监测值与对照点中本底值相比有显著升高的;
c)某一时段内(2年以上)同一关注污染物监测值变化总体呈显著上升趋势的。
表9-1 各监测对象相应限值标准
对于已存在污染迹象的监测结果,应排除以下情况:
a)采样或统计分析误差,此时应重新进行采样或分析;
b)土壤或地下水自然波动导致监测值呈上升趋势的(未超过限值标准);
c)土壤本底值过高或企业外部污染源产生的污染导致的污染物浓度超过限值标准;
对于存在污染迹象的重点设施周边或重点区域,应根据具体情况适当增加监测点位,提高监测频次。
9.2 监测报告编制
重点监管单位应当结合年度自行监测报告,增加土壤及地下水自行监测相关内容。土壤及地下水自行监测报告内容主要包括:
a)重点监管单位自行监测方案;
b)监测结果及分析;
c)单位针对监测结果拟采取的主要措施。
10 监测管理
重点监管单位应按照相关要求对自行监测结果进行信息公开,并对监测结果及信息公开内容的真实性、准确性、完整性负责。
重点监管单位应积配合并接受生态环境行政主管部门的日常监督管理。
11 附则
本指南自发布之日起实施,国家对重点监管单位土壤和地下水环境自行监测相关规定发布后执行国家规定。
在化学元素周期表中,钼元素不怎么引人注“钼”,它不像铝、铁那样常见,不如铂、金贵重,更不似氧、氢那般构成了生命的主体。然而,钼元素与人类的关系其实密切,而关于钼元素的方方面面,有一些趣事你可能并不了解。
钼曾被误认为铅
虽然早在14世纪,人们就懂得利用含钼的钢铁来锻造军刀,但那个时候,人们还没有意识到钼元素的存在。原因在于,钼元素在地壳中的含量约为百万分之一,分布也比较分散,属于比较稀有的金属。而且,钼元素往往不是以单质的形式存在,主要与硫结合成化合物,形成辉钼矿,或者偶尔与铅、铜组合,生成铅钼矿和铜钼矿。
16世纪之前,当人们发现辉钼矿的时候,看到它为铅灰,具有金属的光泽,而且辉钼矿多以细微柔软的鳞片状产出,具有挠性(金属或矿物受力发生变形,在作用力失去之后不能恢复原状的性质称为挠性,与“弹性”相对),摸起来还有种油腻的感觉。这和石墨的性质十分相似,所以辉钼矿被误以为是石墨。后来,人们在寻找铅矿石的时候,发现辉钼矿的外观类似于方铅矿,于是,又把钼误认为是铅。所以,人们便用古希腊语中的“molybdos”(意思是“铅”)命名辉钼矿。
直到1778年,德国化学家卡尔·舍勒才首次实,钼辉矿并不是方铅矿,也不是石墨,而是一种新的矿物,含有新的元素。但是,舍勒没有办法将这种新的元素从矿石中分离出来,所以他没能成为个发现钼元素的科学家。有趣的是,舍勒被后世称为“倒霉蛋科学家”,他的坏运气就是从错失钼元素开始的,后来舍勒又从空气可以助燃的实验现象中差点发现了氧气,但却因为迷信燃素说而将发现氧气的机会留给了安托万·拉瓦锡。
在舍勒之后,其他科学家也试图从辉钼矿中提取出新元素,他们让辉钼矿发生氧化反应,然后将粉末放入水中,形成钼酸,但仍然无法从中析出钼金属。终于,在1781年,瑞典化学家彼得·海基尔姆幸运地摘取了科学果实。他将碳粉、亚麻籽油和钼酸混在一起,搅拌成糊状,然后用封闭的坩埚对这一团“浆糊”加热。终于,海基尔姆用这样的“碳还原法”将新的金属从辉钼矿中分离出来,他随即将该金属命名为“钼”。至此,人们才开始了解到钼元素的真面目。
战争使钼名扬天下
1781年,人们开始懂得如何得到金属钼,但此后的100多年里,全世界金属钼的总产量也不超过10吨。由于钼元素易于氧化,且冶炼和加工水平有限,人们似乎还不知道如何将这种金属大规模地应用到工业生产中来。
不过,钼元素适合重工业的优点还是有目共睹的,它硬而坚韧、耐腐蚀、耐高温,熔点仅次于钨、钽,它注定会成为人类重要的工业原料。1891年,法国施耐德公司率先将钼作为合金元素生产出了含钼的钢板,发现其性能,而且钼的密度仅是钨的一半,钼便逐渐取代钨成为炼钢的合金元素。到了20世纪,人类爆发了两场规模空前的世界大战,统计资料显示,在次世界大战中,钼的年产量从数吨瞬间飙升到了100吨,而到了二战时期,又增长至1万吨。为何战争促进了钼的生产?这是因为它太有用了。
我们知道,“陆战”——坦克就是在一战中发明的。初,英国人为了增强坦克的防御力,给坦克安装了75毫米厚的锰钢板,但这种笨重的坦克在战争中表现得并不怎么样。后来,英国人通过试验,将锰钢板换成钼钢板,在不削弱防御力的前提下使得坦克的厚度减了50毫米,结果,更加机动灵活的坦克才得以大显神威。
同样,德国的攻坚——“大贝尔莎”巨炮,也是用钼钢做成的。一战前期,应德国总参谋部的要求,德国工业巨头克虏伯公司研制出了史无前例的重炮,并以古斯塔夫·克虏伯的妻子贝尔莎命名。“大贝尔莎”的口径为420毫米,炮身重43吨,需要200位德国军人花6个星期才能组装完毕。更吓人的是,“大贝尔莎”的重820千克,射程15千米,再坚固的工事也经不住它来这么一发。克虏伯之所以能够研制出威力如此惊人的巨炮,其秘诀就在于使用了材质的钼钢来制作炮身,因为当“大贝尔莎”发射时,只有耐高温的钼能够抵御产生的热量,以免熔化炮身。
到了第二次世界大战,钼元素同样发挥着重要的作用。当时,战场上的坦克莫过于德国的式坦克,其类型包含Ⅰ型和Ⅱ型两种。从1942年服役至1945年德国投降,式坦克一直活跃于战场线,它所向披靡,抵挡。不过,在库尔斯克会战中,苏联人俘获Ⅱ型坦克后对其进行了测试,发现Ⅱ型坦克并不像传说中的那样坚不可摧,虽然它装甲很厚,但是防御效果相对于Ⅰ型并未有较大提升。之所以出现这种状况,其实是由于德军所占领的挪威克纳本钼矿在1943年被盟军轰炸,从而使德军失去了钼的来源。战争初期,德军的Ⅰ型坦克都采用了钼钢,这种钼钢耐腐蚀,在高温条件下仍然具有较高的强度,而Ⅱ型坦克的厚装甲中已经无钼可用,所以影响了德军装甲部队的战斗力。
钼是多才多艺的金属
两次世界大战使人们意识到钼对于军事的重要作用,战后,钼的年产量由10万吨上升到如今的20多万吨。钼在“战争金属”美誉的同时,其应用范围也越来越广,是在核能、医疗等高科技领域发挥着越来越重要的作用。
2018年,俄罗斯的莫斯科工程物理学院的科学家们发表了一项关于核燃料保护套的研究,他们使用钼合金代替现有的锆合金来用作核燃料保护外壳,可以提高核电站的性。
在现有的核电站中,铀燃料棒是安装在锆合金保护外壳内的。锆合金具有很高的耐腐蚀性,而且锆几乎不会和中子反应,所以是好的核燃料棒保护外壳。但是,在端情况下,比如由于地震和海啸导致应急冷却系统出现故障时,核反应堆内冷却水的水平面会一直下降,使铀燃料棒处于裸露状态,那么冷却不足会使高温的锆合金外壳与高温水蒸气产生氢化作用(即锆水反应),这会导致反应炉熔毁以及氢气爆炸——2011年的日本福岛核电站事故就是这样发生的。如果想要避免类似的事故,办法之一就是寻找一种比锆合金更优秀的核燃料棒保护外壳,而在众多金属材料中,只有钼同时满足比锆更耐腐蚀、更耐热、有更高的导热性以及更小的中子截面积(意味着不与中子反应)的条件,因而特制的钼合金很可能会在未来成为核电站防护装置的主要材料。
钼元素还被应用于医疗实践。比如,锝99是应用广泛的放射性造影剂,不过,锝99只能由一种方式制备,那就是钼99衰变。钼99是钼的一种放射性同位素,它的半衰期为2.75天,半衰期过后,钼99衰变为锝99。钼99的半衰期理想,这个时间不但了钼原子在原料地到医疗场所的运输过程具有的稳定性,而且了锝99的放射性可以在短时间内。如果半衰期过短,在运输过程中,钼原子可能产生放射性辐射的危险;如果半衰期过长,将影响医疗诊断的效率。在核医学中,80%的医疗到了锝99,而在美国,每天使用锝99的诊断就达 55000多起,所以,钼的重要性不言而喻。
生命对钼很敏感
生物老师常常会讲一个故事:某一年,新西兰的一个牧场遭遇了干旱,大量牧草枯萎而死,但有一条矿工经常踩踏的小路边上生长着茂密的绿草。这是为什么呢?原来这里的矿场是钼矿,矿工们每天工作,身上难免会沾上矿渣,当他们走路时不经意间将矿渣撒落在小路上,就如同上天赐予的“大补丸”,给路边的小草提供了的养料。另外,科学已经明,对农作物施加钼肥,可以增强农作物的抗病、抗旱和抗旱能力,提高产量。比如,根据科学家的统计,每亩农田施加钼肥20克,可使小麦增产35%,而大豆则可增产47%,蚕豆增产8%,绿豆增产32.8%,番茄增产75%。
钼不仅是植物生长和发育中的微量元素,也是植物发挥固氮功能的重要元素。氮是生命之源,有了氮,植物才变得有营养。然而,植物并不能直接吸收空气中的氮气,它们需要在固氮菌的帮助下,通过化学反应将氮元素吸收并存储起来。固氮菌为植物固氮的过程很复杂,需要一种催化剂,名为固氮酶,金属钼正是固氮酶的重要成分。每年,植物固氮总量约1亿吨,远超过人工固氮量,这都是钼元素的功劳。
不仅植物需要钼,我们人体内也需要钼,只不过需量少。成年人体内大约只有9毫克钼,而且它们分散在身体的各个部分。虽然如此,我们对于钼还是敏感的。比如,钼与我们头发的颜有关,因为钼元素会使头发偏红褐。又比如,我们的情绪也容易受钼的影响,有它,我们会精力充沛,神气十足,缺少或无它,我们会感到疲惫不堪,浑身乏力。钼为什么有这么大的本事呢?原因在于,钼是两种在新陈代谢中起重要作用的酶的组成成分,一是黄嘌呤氧化酶,一是亚硫酸盐氧化酶。这两种酶有钼存在时才具有活力,没有钼,就会失去活力,起不了催化作用。
由于钼在食物中比较广泛地存在着,小麦、豆类、猪肉、牛奶、蜂蜜都含有钼,人对于钼的需要量也不高,所以我们一般不会缺钼。如果身体摄入多余的钼,反而会引起金属中毒。
由此看来,钼这种罕见的元素,与我们的日常生活还真息息相关呢。
废钼回收的环保意义与政策支持
钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。
南平正规回收废钼厂商地址
该材质的用途有:钢铁工业,能源领域,电子行业,生物工业。1、钢铁工业:金属钼是钢铁生产过程中一种重要的合金添加剂,可以提高钢材的硬度、强度、耐磨性和耐腐蚀性,使钢材更具有可塑性和可加工性。2、能源领域:金属钼在能源领域的应用主要是作为催化剂,促进反应的进行,提高催化剂的稳定性和催化效率。3、电子行业:金属钼也被广泛应用于电子行业,主要用于制造半导体材料和热电子器件等。4、生物工业:钼是生物体内的微量元素之一,可以作为肥料和饲料中的营养成分,此外,钼也是一些生物酶的重要组成部分,参与人体的蛋白质代谢等。
金属钼是一种重要的战略资源,广泛应用于钢铁合金、化工、能源和航空航天领域。钼的耐高温、耐腐蚀和高强度特性使其成为高性能材料的关键成分。近年来,随着新能源技术和高端制造业的发展,钼的需求持续增长。然而,钼资源的有限性和开采成本的上升,以及法规的严格要求,是钼行业面临的挑战。
未来,钼行业的发展将更加注重资源的利用和绿开采。一方面,通过回收利用钼废料和二次资源,提高钼的循环利用率,减少对原生资源的依赖。另一方面,采用的开采和提炼技术,如生物浸出和湿法冶金,降低钼生产过程中的环境污染。此外,钼行业将探索与新材料技术的融合,如开发钼基复合材料和钼合金,满足新能源电池、高温合金等领域的高性能需求。
《2025年中国金属钼发展现状调研及市场前景分析报告》基于科学的市场调研与数据分析,全面解析了金属钼行业的市场规模、市场需求及发展现状。报告深入探讨了金属钼产业链结构、细分市场特点及技术发展方向,并结合宏观经济环境与消费者需求变化,对金属钼行业前景与未来趋势进行了科学预测,揭示了潜在增长空间。通过对金属钼重点企业的深入研究,报告评估了主要品牌的市场竞争及行业集中度演变,为投资者、企业决策者及银行信贷部门提供了权威的市场洞察与决策支持,助力把握行业机遇,优化战略布,实现可持续发展。
一、研究范围界定
二、钼合金
三、钼应用领域
一、钼精矿产品
二、钼炉料产品
三、钼化工产品
四、钼金属产品
一、钼资源现状
二、中国钼精矿的种类
三、中国钼精矿的分布与富集区
一、钼产量
二、新增钼矿项目
一、钼消费量分析
二、钼消费结构分析
三、钼消费区域分析
一、2025年金属钼价格分析
……
三、2025年氧化钼价格分析
一、2025年中国GDP增长情况分析
二、2025年中国工业经济发展形势分析
三、2025年中国全社会固定资产投资分析
四、2025年中国社会消费品零售总额分析
五、2025年中国城乡居民收入与消费分析
六、2025年中国对外贸易发展形势分析
一、行业监管
二、出口税收
三、出口配额管理
一、2025年中国采矿业固定资产投资
二、矿产资源的形势及未来需求展望
一、2025年钼精矿产量情况分析
二、中国钼加工产品生产现状
三、中国钼精矿开采的技术分析
四、中国新增钼资源情况
一、钼市场消费结构
二、特钢钼消费需求情况分析
三、石油化工行业钼消费需求分析
四、钼精矿市场现状分析
五、2025年国内钼价格分析
一、中国钼加工业现状
二、钼加工业面临挑战
三、钼加工业发展机遇
四、拓宽应用领域和发展钼新材料
五、突破钼加工技术瓶颈
六、加大新技术开发、推广和应用
七、中国钼深加工产业同国外的差距
一、中国钼精矿资源开发利用的内部优势
二、中国钼精矿资源开发利用的内部劣势
三、中国钼精矿资源开发利用存在的外部环境的机会
四、中国钼精矿资源开发利用存在的外部环境的威胁
一、建立资源保障体系
二、提升产业技术水平
三、培育企业核心竞争力
四、优化客户资源
五、加大与投资力度
一、2025年中国钼矿砂及其精矿分析
二、2025年中国钼矿砂及其精矿出口分析
三、2025年中国钼矿砂及其精矿进出口均价分析
四、2025年中国钼矿砂及其精矿进出口流向分析
五、2025年中国钼矿砂及其精矿进出口省市分析
六、2025年中国钼矿砂及其精矿进出口关区分析
一、2025年中国钼铁分析
二、2025年中国钼铁出口分析
三、2025年中国钼铁进出口均价分析
四、2025年中国钼铁进出口流向分析
五、2025年中国钼铁进出口省市分析
六、2025年中国钼铁进出口关区分析
一、2025年中国钼及其制品分析
二、2025年中国钼及其制品出口分析
三、2025年中国钼及其制品进出口均价分析
四、2025年中国钼及其制品进出口流向分析
五、2025年中国钼及其制品进出口省市分析
六、2025年中国钼及其制品进出口关区分析
一、企业基本情况
二、2025年企业经营情况分析
三、2025年企业经济分析
四、2025年企业盈利能力分析
五、2025年企业偿债能力分析
六、2025年企业运营能力分析
七、2025年企业成本费用分析
一、公司发展基本情况
二、2025年企业经营情况分析
三、2025年企业经济分析
四、2025年企业盈利能力分析
五、2025年企业偿债能力分析
六、2025年企业运营能力分析
七、2025年企业成本费用分析
一、公司发展基本情况
二、2025年企业经营情况分析
三、2025年企业经济分析
四、2025年企业盈利能力分析
五、2025年企业偿债能力分析
六、2025年企业运营能力分析
七、2025年企业成本费用分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、公司基本情况
二、企业主要经济
三、企业偿债能力分析
四、企业盈利能力分析
五、企业运营能力分析
一、“十四五”中国经济形势预测分析
二、2025-2031年中国钼产量预测分析
一、有利因素
二、不利因素
一、行业进入壁垒
二、行业盈利水平
三、行业竞争格
四、行业上下游
五、行业监管情况
一、资金风险分析
二、钼价格风险分析
三、钼资源风险分析
四、风险分析
五、生产风险
六、能源和水的供应
一、中国钼精矿行业的发展战略选择
二、中国钼精矿行业的发展战略规划
三、中国钼精矿行业发展战略的保障措施
钼
元素符号Mo,原子序数42,在元素周期表中属ⅥB族,原子量95.94,体心立方晶格,熔点2610℃。金属钼是一种用途广泛的难熔金属材料。生产钼材的原料是钼粉。各类钼材如钼棒、钼板、钼管、钼丝以及掺杂钼和各种钼制品在现代工业的各个部门中都有重要的应用。
简史1782年瑞典化学家耶尔姆(P.J.Hjelm)将氧化钼和木炭一起加热得到了黑的金属钼粉末。纯钼材料的生产和在工业中的应用与首批钨丝白炽灯同时投放市场。钼比钨容易加工,较为经济,很适合在白炽灯中作钨丝的支撑、挂钩。该用途一直延续至今。1911年出现用钼丝或钼带作发热体的高温炉,温度可达1705℃。在1939年以前,生产钼材的惟一方法是粉末冶金法,用直接通电加热的方法来烧结压坯。产品的截面小,重量轻,只能制作丝、片、带等,在照明灯和电子管中使用。1939至1945年期间,美国研究出了“活化烧结法”,降低了钼的烧结温度。用间接加热可以烧结重达上百公斤的坯料。1943年美国人帕克(R.M.Parke)和哈姆(J.L.Ham)研究成功用自耗电电弧炉熔铸钼锭的方法,得到了致密、均匀、高质量的钼和钼合金锭。从这一年起,钼开始用作玻璃熔炉的加热电,且用量不断增加,已成为钼的重要用途之一。40年代后期至60年代,航空航天、原子能工业迅速发展,钼因其熔点高、高温强度好和耐腐蚀而受到重视。各类钼材的制取工艺及各系列钼合金在此期间得到了很大的发展。中国在50年代初开始用粉末冶金法生产钼丝、钼棒和钼片。50年代末用真空白耗电弧炉熔炼出钼锭,并用模锻方法锻造出钼叶片。60年代初用熔炼和粉末冶金的坯锭轧制出大型纯钼和钼合金板材。现在能用此两种坯锭生产出钼及其合金的各种规格的棒材、板材、管材及异形制品等。
性质包括物理性质、化学性质和力学性能。钼有良好的耐腐蚀性,对多种无机酸如盐酸、氢氟酸、磷酸,多种液态金属如锂、铋、镁、钾、钠,熔融的氟盐等都有好的抗侵蚀性。钼还能耐大多数熔融玻璃的侵蚀。钼与氧化物耐火材料氧化锆、氧化铝、氧化铍、氧化钍等直至1750℃以上都不起作用。但钼的抗氧化性能差,不耐氧化性酸如硝酸、王水和氧化性熔盐如等的腐蚀。常温下钼在空气中稳定,650℃以上氧化,生成的氧化物在700℃以上挥发形成白烟雾,常称“灾难性氧化”。钼的力学性能取决于材料的纯度和制取过程。塑性加工可使纯铝强化。钼有塑性一脆性转变。影响钼塑性的因素有间隙元素,如氮、碳尤其是氧使钼的塑一脆转变温度升高。其他如晶粒取向、变形量、再结晶程度等都影响其塑一脆转变温度。钼的主要物理性质如下:
钼对几种介质的耐腐蚀性列于表1。钼的拉伸性能列于表2。
用途 钼的应用较广,在电子工业中用作灯泡和电子管中钨丝的支撑材料、阳、栅,还可作钨丝的缠绕芯杆。在金属加工工业中可用作压铸和挤压模具、热穿孔顶头、电阻铆焊的电、钻或镗刀具的刀杆。钼的膨胀系数与高温玻璃相近,是良好的玻璃与金属的封接材料。在原子能工业中用作在液态碱金属介质中工作的材料和在熔盐反应堆中使用。在化学工业中用作耐酸阀门等。用钼作发热体的加热炉在真空或氢气中温度可到2205℃。钼耐玻璃侵蚀,其少量氧化物不会使玻璃着,所以在玻璃及玻璃纤维工业中可代替铂作熔融玻璃的搅拌器,用钼棒或钼板作玻璃熔窑的加热电等。由于钼在高温下不抗氧化,即使加抗氧化保护涂层后也不能在高温下长期使用,因此在航空航天工业中只能作瞬时或短时工作的部件。如火箭发动机的喷管、火箭鼻锥、方向舵、防热屏等。
制取方法钼加工材的制备工艺主要包括坯锭制取、塑性加工、热处理和焊接。
坯锭制取钼坯锭的制取主要有熔炼和粉末冶金两种方法。(1)熔炼法。将垂熔钼条焊接、捆扎成自耗电,用真空白耗电弧炉或电子轰击炉熔炼成钼铸锭。为了脱氧和消除气孔,常加入钛或碳。熔炼钼锭杂质含量低,纯度高,密度可达理论值。但铸锭的晶粒粗大,塑性加工时需要挤压开坯,然后再进一步锻造或轧制。熔炼法产品收得率较低。(2)粉末冶金法。小规格坯锭可由钼粉用传统的机械模压成形,于炉中通氢垂熔烧结成垂熔钼条,作为加工杆、丝、窄带等的坯料或电弧熔炼的自耗电;大规格坯锭用等静压成形,成形压力一般为150MPa,通氢高温烧结,温度一般在1900℃。如需要塑性加工,则坯锭的相对密度(实测密度与理论密度之比)应在93%以上。粉末冶金坯锭的组织均匀、晶粒细,有利于塑性加工,可以不经挤压而直接锻造,板坯可以直接轧制,产品的收得率高。如轧制1.0mm厚的大型钼板,粉末板材的收得率可以比熔炼板材高出1倍以上。因此,粉末冶金法是制取钼坯锭的主要方法。
塑性加工塑性加工可以提高钼的强度和低温塑性,其方法有常规的挤压、锻造和轧制等。用这些方法可以生产钼的棒、板、带、丝和管材。虽然钼在高温下剧烈氧化,但氧并不向内部渗透,氧化层易于清洗,所以坯锭可以在煤气炉或燃油炉中加热,并不需防氧化保护。塑性加工也可在大气气氛中进行,但氧化物的挥发会污染空气,应注意通风防护。
(1)挤压。用于熔炼钼锭的开坯。钼铸锭的晶粒粗大,初加工困难,需要经挤压将粗大的柱状晶破碎后再锻造或轧制。也可以用挤压得到成品棒材和管材。挤压温度与挤压比和挤压速度有关,一般为1100~1300℃,也可以将挤压温度提高到1500℃以降低变形抗力。为了将铸态晶粒破碎,纯钼挤压比应大于4。挤压时用玻璃粉或玻璃纤维作润滑剂。
(2)锻造。用以获得各种尺寸的棒材或其他形状的锻件。普通锻造可生产直径约为18mm以上的棒材和其他形状的锻件。粉末烧结钼锭可以直接锻造,开锻温度一般在1300℃左右,火的变形量应在30%以上。随着变形量增加,锻造温度可逐步降低,终锻温度在1000℃左右。旋转模锻用于生产直径小于18mm的细棒和钼杆,进一步加工拉制成丝材。旋锻的开锻温度通常在1400℃左右,道次变形量为10%~20%,随着变形量增加模锻温度逐步降低。
(3)轧制。主要用于生产板材、带材和箔材,也可轧制棒材和管材。粉末烧结板坯可以直接轧制,其开坯温度一般在1400~1500℃,初轧道的变形量很重要,应大于25%,可以到40%以上,并在设备允许的情况下以大压下量为佳。随着变形量增加轧制温度可逐步降至1200℃;900℃;500~600℃。板厚到1.5~2mm时可在200~300℃冷轧;板厚到10.0mm以下时可在室温冷轧。轧制工艺不同时,板材的力学性能有明显差别。交叉轧制的板材,其力学性能较好。熔炼钼锭经挤压、锻造的板坯,轧制温度一般在1200~1250℃。用熔炼钼锭生产板材,其产品收得率一般在20%~25%用粉末冶金板坯生产板材的产品收得率约为50%。中国目前粉末冶金法生产钼板。
热处理纯钼只应用再结晶退火和消除应力退火。再结晶退火用于挤压、锻造、轧制等热加工过程的中间退火,退火温度取决于加工条件和变形量。消除应力退火用于温加工和冷加工过程中,以便消除加工硬化、减少变形抗力,其退火温度一般为900℃。塑性加工的钼材以消除应力状态下使用为佳。热处理不能使纯钼强化。
焊接钼可用惰性气体保护焊或电子束焊,但钼有焊接脆性的缺点。
钼材标准中国实行的钼材标准列于表4。
表4中国实行的钼材标准
金融界7月3日消息,上指数高开震荡,中有金属指数 (中有,930708)上涨0.26%,报1890.77点,成交额361.34亿元。
数据统计显示,中有金属指数近一个月上涨10.15%,近三个月上涨7.02%,年至今上涨17.20%。
据了解,中有金属指数选取涉及有金属采选、有金属冶炼与加工业务的上市公司作为样本,以反映有金属类相关上市公司的整体表现。该指数以2013年12月31日为基日,以1000.0点为基点。
从指数持仓来看,中有金属指数十大权重分别为:紫金矿业(10.74%)、北方稀土(4.75%)、洛阳钼业(4.64%)、山东黄金(4.59%)、中国铝业(4.34%)、华友钴业(3.99%)、中金黄金(3.2%)、赤峰黄金(3.16%)、赣锋锂业(3.02%)、云铝股份(2.65%)。
从中有金属指数持仓的市场板块来看,上海券交易所占比60.66%、深圳券交易所占比39.34%。
从中有金属指数持仓样本的行业来看,原材料占比98.56%、信息技术占比0.85%、工业占比0.60%。
资料显示,指数样本每半年调整一次,样本调整实施时间分别为每年6月和12月的第二个星期五的下一交易日。权重因子随样本定期调整而调整,调整时间与指数样本定期调整实施时间相同。在下一个定期调整日前,权重因子一般固定不变。情况下将对指数进行临时调整。当样本退市时,将其从指数样本中剔除。样本公司发生、合并、分拆等情形的处理,参照计算与维护细则处理。
跟踪中有的公募基金包括:国泰中有金属ETF联接A、东财中有金属指数增强E、华宝中有金属ETF、国泰中有金属ETF联接C、财通资管中有金属A、华宝中有金属联接A、华宝中有金属联接C、东财中有金属指数增强C、国泰中有金属ETF、东财中有金属指数增强A等。