宣城专业废钼回收收购厂家
钼(mù)为银白金属,硬而坚韧,是人体及动植物的微量元素。人体各种组织都含钼,在人体内总量为9mg,肝、肾中含量高。钼是一种过渡元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。钼是钢与合金中的重要元素,常用的含钼炉料有金属钼、钼铁,有时还可以使用氧化钼精矿来直接还原冶炼含钼钢种。
【论文】氧化铝陶瓷的低温钼金属化研究
【论文】提高钼金属回收率探讨与分析
钼金属可行性研究报告
【论文】钼基非金属材料研究进展
金属钼行业研究报告
2014-2018年中国金属钼市场行情态势及投资前景研究报告
2014-2018年中国金属钼行业市场分析及投资方向研究报告
粉冶金属钼的动态再结晶行为研究
废钼回收的环保意义与政策支持
钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。
宣城专业废钼回收收购厂家
摘要:从铜含量为0.77%~1.32%之间的铜渣中回收金属,回收金属主要为铜;然而一些渣也含有0.4%左右的钼,有可能将熔融的铜渣变为一种新原料来开发新工艺,得到新产品。从这点来讲,使用焙烧-浸出工艺处理铜渣是为了回收渣中的钼,用氧化焙烧法将氧化铁转化为不溶性赤铁矿,而铜和钼转化为可溶态溶于酸溶液。因为钼与氧化铁类晶石相结合,在浸出过程中它的还原会受四氧化三铁成分影响,使用硫酸进行渣浸出,钼的回收率超过80%。因此,使用两段工艺,即氧化焙烧后酸浸对钼进行回收,得到的结果表明这种方法的可行性。
0前 言
当前,受经济、环境及金属高消费问题的影响,迫使人们开发更经济有效、从二次资源中回收有价金属的方法得到了推广。智利每年要产出含铜量为0.77%~1.32%、含钼0.4%及大量的铁和二氧化硅的铜渣超过350万t,因而,在循环利用金属萃取工艺上,铜渣就显示出了它的经济潜力[1]。
从铜渣中萃取金属有许多湿法冶金方面的建议,这包括直接从硫酸或氯化铁中浸出,也有将渣与硫酸、硫酸铵、硫酸铁焙烧或在还原的条件下酸浸这方面的报道。然而,的报道都是涉及铜和钴或镍还原方面,关于通过湿法冶金工艺从铜渣中回收钼的数据少有报道[4-8]。
因此,有人提议焙烧低品位的钼精矿与石灰或碳酸钠,将钼转化为钼酸盐,也有人研究将废催化剂与碳酸钠焙烧,还原可溶性钼酸盐[9-12]。因此,生产钼有效的方法是将钼精矿焙烧得到三氧化钼,随后对三氧化钼进行还原得到金属钼[12]。所以,本工作的重点是研究氧化物经过焙烧后酸浸,从铜渣中回收钼的可行性。
1从理论上讲
铜渣中的矿物学成分及所呈现的相取决于加
工矿物的类型、炉子的类型及冷却方法等几方面的因素。缓冷导致渣的组分有相当数量的结晶,形成大量的不同矿物相,冷却的速度越慢,矿物相增长越大;缓冷速度快,有可能产生非晶体渣,因而金属在渣中分布越均匀[14]。当铜渣是晶体时,主相通常是伴有硅酸盐的硅酸铁盐及金属氧化物,铜以氧化物或硫化物或两者的混合体存在。
在铜的回收过程中,比较典型的铜渣分析显示,钼分散在整个氧化铁相中,钼高度氧化,并与四氧化三铁的化学结构相结合,如图1所示。
在冶炼前,由于钼从硫化铜矿中浮选的效率低,所以钼出现在渣中。同时,也有报道说钼与属于2FeO·MoO2-Fe3O4系列的尖晶石结合,浸出率低[15]。
在熔融状态下,除了带入液体的一些铜及硫化铜以外,从化学性质上讲,渣是均质的,在急速冷却条件下,它仍保持均质状态。当渣缓慢冷却时,它不会过氧化,且至少可能形成两种固体相:硅酸亚铁和部分被氧化成的四氧化三铁,铜仍为硫化物;这种条件下通常通过浮选回收铜。然而,根据以下反应,铜、硫化铜及氧化铜在高度氧化焙烧条件下,温度在600~800 ℃时,能被转化。
Cu+1/2O2=CuO (1)
Cu2S+2O2=2CuO+SO2 (2)
Cu2O+2/3O2=2CuO (3)
在这些条件下,当温度达到800~1 100 ℃之间时,硅酸铁在有氧条件下分解,具体如下:
2FeO·SiO2+1/2O2=Fe2O3+SiO2 (4)
2FeO·SiO2+1/3O2=2/3Fe2O3+SiO2 (5)
根据以下反应,钼从它与氧化铁的尖晶石的组合物中分离出
2FeO·MoO2·Fe2O3+O2= 2Fe2O3+MoO3 (6)
图2实验室实验的结构图
因而,氧化焙烧会使铁硅酸盐分解,形成不溶于酸溶液的四氧化三铁和二氧化硅,这样在室温条件下,经过焙烧工序处理的产品就很容易通过酸浸进行处理,钼的还原效果就好,铜仍留在渣里面。
2实 验
缓冷和速冷却的系列冶炼铜渣的化学特性,如表1所示。
表1系列冶炼铜渣的化学性质* %
在一个典型的试验中,渣在实验室的管式Lindberg-Blue 炉0.5 cm厚的固定床上进行焙烧,条件如下:温度700 ℃,所用气体中混有90%的空气及10%的二氧化硫,物料粒度400目为100%,所得到的煅烧砂使用标准浸出测试法用如下条件在实验室中浸出:温度为18~20 ℃,硫酸为50 g/L,液固比为10∶1,物料粒度200目为100%,如图2所示浸出2 h。进行浸出测试以确定不经过煅烧步骤渣的溶解性,条件如下:温度为20 ℃,硫酸150 g/L,液固比为10∶1。
空气与二氧化硫混合是为了评估使用冶炼烟气促成四氧化三铁反应的可行性,正如以前报告中提到的计划那样,增加铜渣的商用价值[17]。
3结果与讨论
图3显示的是使用扫描电镜技术扫描到的缓冷渣的特性,微探针分析显示的是沉积的氧化物及硅酸盐的络合物,钼在这里形成了一个Fe-Mo-O的分离相,如1#、2#和4#相所示,络合物中铁的含量在52.03%~63.57%之间,钼含量在1.25%~6.35%之间。同时,这些相中二氧化硅的含量低,表明铁能在磁铁矿中呈现如FeO·MoO2-Fe3O4样的尖晶石结构,3#相显示的是玻璃状的铁硅酸盐型含钼量低的二氧化硅富集溶液。
图4是渣的扫描电镜分析,如图4a所示,可观察到铁分布在整个玻璃状的铁硅酸盐相中;图4b显示的是钼散布在渣中并与铁的分布路径紧邻的硅酸盐相。
铁的高萃取率表明铁硅酸盐的主要部分分解,这导致酸的消耗及溶液中胶态氧化硅增加,也增加了后期钼分离的难度。每吨渣所消耗的硫酸量在800~1 000 kg,溶液中的二氧化硅的富集量在10~15 g/L。
如图5所示,含不同成份磁铁矿的渣使用焙烧-浸出工艺,可观察到渣随着钼还原量的增加,四氧化三铁含量减少。
由于钼与氧化铁尖晶石结合在一起,酸浸不易分解,需要氧化成为钼的易溶态或氧化钼,这样才能在浸出过程中溶解,铁被氧化成为氧化铁,以便对钼进行选择性浸出。
在氧化过程中,氧化铁尖晶石转化为氧化铁,钼从铁尖晶石相中分离出,同时也被氧化成为它的高氧化态并反应生成热稳定的合成物,该合成物可以从氧化铁及硅酸盐合成物中不受限进行选择性浸出。
这里应当注意渣的熔点,这些合成物可以互溶,且由于氧化亚铁和四氧化三铁决定了铜渣的氧化态,可以得出钼的还原态为Mo4+。
因为渣中钼的浓度比较低,与以高的浓度并以Fe2+及Fe3+氧化物形态存在的氧化铁相比,很难经过分析实二氧化钼的存在。然而,有一点清楚,渣与四氧化三铁尖晶石晶化,形成二氧化钼固溶体,钼的浸出率低。
4结 论
铁和钼分布在整个玻璃状硅酸盐相,且在渣中钼的分布与铁的分布路径紧紧相邻,因此,钼主要与氧化铁尖晶石相结合。
由于氧化反应破坏了渣的结构,产生赤铁矿及方晶石,氧化铁及二氧化硅成为渣的主要成份,二氧化硅相中也应当有次要的氧化物成份出现,因而,在被氧化的渣中,硅酸盐及氧化铁就成为预期的两个主要的基本相。
人们普遍认为,渣氧化的结果是钼和铁被氧化成高氧化态,因而使用酸浸工艺就可以将钼从渣的氧化微粒中选择性浸出。
渣中的四氧化三铁显示,钼是嵌入在尖晶石固体相中,说明它在酸溶液中的溶解度低。然而,渣的溶解度测试结果显示,当渣中的四氧化三铁含量减少时,钼的萃取率提高,这对渣的焙烧转化同样有效。
钼是一种金属元素,元素符号:Mo,英文名称:Molybdenum,原子序数42,是VIB族金属。钼的密度为10.2g/cm³,熔点为2610℃,沸点为5560℃。钼是一种银白的金属,硬而坚韧,熔点高,热传导率也比较高,常温下不与空气发生氧化反应。作为一种过渡元素,易改变其氧化状态,钼离子的颜也会随着氧化状态的改变而改变。钼是人体及动植物所的微量元素,对人以及动植物的生长、发育、遗传起着重要作用。钼在地壳中的平均含量为0.00011%,钼资源储量约为1100万吨,探明储量约为1940万吨。由于钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,被广泛应用于钢铁、石油、化工、电气和电子技术、医和农业等领域。
虽然钼是在18世纪后期被人们发现的,但在钼被发现之前,就已经被人们使用,如14世纪,日本使用含钼的钢制造马刀。16世纪,辉钼矿因为与铅、方铅矿及石墨的外观和性质都很相似,被人们当作石墨使用,当时的欧洲人还将这几种矿石统称为“molybdenite”。
1754年,瑞典化学家BengtAnderssonQvist检测了辉钼矿,发现里面不含铅,因而他认为辉钼矿与方铅矿并不是同一种物质。
1778年,瑞典的化学家舍勒发现硝酸与石墨不起反应,而与辉钼矿反应后获得一种白粉末,将它与碱溶液共同煮沸,结晶析出一种盐。他认为这种白粉末是一种金属氧化物,用木炭混合后强热,并没有获得金属,而当它与硫在一起加热后却得到原来的辉钼矿,因而他认为辉钼矿应该是一种未知元素的矿物。
根据舍勒的启发,1781年,瑞典人耶尔姆用“碳还原法”从这种白粉末中分离出一种新的金属,并将该金属命名为“Molybdenum”。
合金领域
钼在钢铁领域的消费量大,主要用于生产合金钢(约占钼在钢铁消耗总量中的43%)、不锈钢(约23%)、工具钢和高速钢(约8%)、铸铁和轧辊(约6%)。钼大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分则先熔炼成钼铁,然后再用于炼钢。钼作为钢的合金元素具有以下优点:提高钢的强度和韧性;提高钢在酸碱溶液和液态金属中的抗腐蚀性;提高钢的耐磨性;改善钢的淬透性、焊接性和耐热性。例如,含钼量为4%-5%的不锈钢往往用于诸如海洋设备、化工设备等侵蚀、腐蚀比较严重的地方。
以钼为基体加入其他元素(如钛、锆、铪、钨及稀土元素等)构成有合金,这些合金元素不仅对钼合金起到固溶强化和保持低温塑性的作用,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼基合金因为具有良好的强度、机械稳定性、高延展性而被用于高发热元件、挤压磨具、玻璃熔化炉电、喷射涂层、金属加工工具、航天器的零部件等。
为了钼精矿质量,有时需要进一步分离钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物,如使用硫化钠、硫氢化钠、氰化物或铁氰化物抑制铜和杂质含量。钼精矿冶炼主要采用以下几种方法:
氧化焙烧:将辉钼矿进行焙烧得到钼焙砂,然后通过升华法或湿法制得三氧化钼,用氨浸出时生成钼酸铵进入溶液,与不溶物加以分离。溶液经浓缩结晶得到钼酸铵晶体,或加酸酸化生成钼酸沉淀,从而与可溶性杂质分离。二者经煅烧后都生成纯净的三氧化钼,然后用氢还原法生产金属钼。根据焙烧设备或添加组分的不同,可将该方法分为回转窑焙烧工艺、反射炉焙烧工艺、多膛炉焙烧工艺、流化床焙烧工艺、闪速炉焙烧工艺。该方法会产生大量的烟气,污染环境,钼回收率较低,伴生的稀有元素铼几乎随着烟气跑掉,不适合处理低品位矿石和复杂矿。
硝酸浸出法:在高压釜内使MOS2氧化为可溶性钼酸盐,该方法主要是消耗廉价的氧化剂-空气或纯氧。该方法需要高温高压,对反应设备要求高,反应条件,生产技术难度大,浸出过程的工艺条件也较难控制,生产过程中也存在一定的隐患,目前国内已暂停使用该方法。
次氯酸钠浸出法:主要用于处理低品味中矿、尾矿的浸出。在氧化浸出过程中,次氯酸钠本身也会缓慢分解析出氧,其他一些金属硫化物也会被次氯酸钠氧化,这些金属的离子货氢氧化物又会与钼酸根生产钼酸盐沉淀,促进溶液的钼又返回到渣中。该方法反应条件温和,生产易于控制,对设备要求不高,但原料次氯酸钠消耗量大而造成生产成本过高。
电氧化浸出法:是由次氯酸钠法改进而来,该方法是将已经浆化的辉钼矿物料加入到装有氯化钠溶液的电解槽中,在电氧化过程中,阳产物Cl2又与水反应,生产次氯酸根,次氯酸根再氧化矿物中的硫化钼,使钼以钼酸根形态进入溶液中。该方法继承了次氯酸钠浸出率高、反应条件温和、的特点,并且能够较为方便的控制、调节反应的方向、限度、速率。
目前也出现了一些新方法,如辉钼矿精矿不经氧化焙烧,直接用氧压煮法或细菌浸出法提取纯三氧化钼。对低品位氧化矿用硫酸浸出,从溶液中用离子交换法或萃取法提取纯三氧化钼。
与钼酸钠一样,钼酸锌也是过渡金属钼的一种盐,其因有良好的物理化学性质,而广泛应用于生活的每一个角落,如涂料、建筑、化工、医等领域。
从定义上来看,钼酸锌又称氧化钼锌,是由锌离子和钼酸根离子共同组成的化合物,英文为Molybdenum zinc oxide,化学式为ZnMoO4,分子量为225.3。
从结构上来看,白钨矿晶体结构的ZnMoO4,Mo6+位于氧四面体中心,形成Mo042—,Zn有八个近邻氧配体,形成一个畸变的立方体;钨锰铁矿结构的ZnMoO4,MoO42—是呈现扭曲的配位八面体。
从理化性质来看,ZnMoO4的外观为白或浅黄粉末,密度约4.3g/cm³,折射率约1.56,具有难溶于水,易溶于酸,能与碱性氧化物发生反应,,无放射,耐高温,耐光性,较强的遮盖力和着能力等特点。
从生产工艺来看,ZnMoO4的具体制备步骤如下:先将钼酸盐和锌盐分别溶于水中,然后将钼酸盐溶液逐滴加入锌盐溶液中,加完后的混合溶液再转移到高压釜中进行反应,等待反应结束后取出来冷却至室温,洗涤,干燥即可得到产物。