连云港周边废钼回收多少钱收
引 言
随着电子及信息产业的迅猛发展,对溅射靶材的需求不断增加,同时对其技术及靶材性能的要求也在不断提高。 难熔金属钼具有高熔点(2620±20℃)、高弹性模量(280~390 GPa)、低线性热膨胀系数(5.8 ×10-6 ~ 6.2 ×10-6 / K)、高耐磨性、良好的导电/ 导热性能和热稳定性[1 - 3]。 因此,钼靶材经磁控溅射制成的钼合金薄膜是平面显示用液晶显示器面板的电或配线的关键材料。
在电子行业中,为了提高溅射效率和确保溅射薄膜的质量,要求溅射靶材具有高纯度、高致密度、晶粒细小且尺寸分布均匀、结晶取向一致等特性。
纯钼靶材溅射出的薄膜在耐腐蚀性(变) 和密着性(膜的剥离)等方面仍有待改善。 已有研究表明:在钼中加入适量合金元素(V、Nb、W、Ta)可使其比阻抗、应力、耐腐蚀性等各种性能达到均衡。 因此,目前钼合金靶材已经取代纯钼靶材成为研究的热点。 添加 W 可以有效提高钼的高温强度和再结晶温度,抑制钼靶材中的晶粒长大,但是钨的比重大且室温脆性大,钨添加量较大时会导致钼合金靶材较重,且塑性降低,容易萌生裂纹[4]。 Jorg 等[5]的研究表明,在钼中添加 20% (原子数分数)Al 和 10% (原子数分数)Ti 可以改善钼的抗氧化性能,并同时保持其低电阻率。 由于钼与铌均具有体心立方的晶体结构, 两 者 之 间 的 晶 格 错 配 度 低, 在 钼 中 添 加5% ~ 10% (质量分数) Nb 可以显著提高溅射薄膜的比电阻、耐腐蚀性能和黏结力[6 - 7]。 由于钽会优先被氧化形成钝化层,所以添加Ta元素可以降低薄膜的腐蚀率,但会造成钼合金薄膜电阻率升高[8]。
与钼铌合金薄膜相比,钼钽合金薄膜晶粒细化效果更加显著,薄膜沉积速率更大,薄膜表面粗糙度更小,但薄膜的电阻率更大[9]。Mo 靶材组织对溅射薄膜形貌与性能的影响研究结果表明:靶材组织、择优取向对薄膜形貌与取向影响不大,但靶材晶粒尺寸及均匀性会影响薄膜沉积速率、薄膜厚度及薄膜的方阻[10]。 马杰等[11] 研究了钼靶材变形量及热处理对薄膜组织与性能的影响,结果显示:相较于变形量小的钼靶材,80% 变形量的钼靶材溅射所得薄膜晶化程度更高;钼靶材经1 050 ℃退火后溅射制得薄膜粗糙度小。
磁控溅射是钼合金薄膜的主要制备技术。 靶材作为磁控溅射过程中的关键材料,不仅使用量大,而且靶材质量的好坏对钼合金薄膜的性能起着决定作用。 本文从粉体优化、混粉工艺、成型和烧结技术等方面对钼及钼合金溅射靶材相关专利进行了统计与分析,旨在为开发高品质钼合金多元靶材提供借鉴。
1 、专利统计与分析
1.1 粉体优化
专利(CN 103990802 B) [12] 通过优化 Mo 粉末的性状,开发出了一种高密度、高纯度 Mo 合金溅射靶材的制备方法,所制备 Mo 合金溅射靶材能够稳定、廉价地制造出低电阻、高耐湿/高耐热性、与基体密合性的高品质薄膜。
专利(CN 103173728 B) [13] 发明了一种廉价且可稳定制备 Mo 合金溅射靶材的方法,即将 Mo 粉与1 种或 2 种以上的 Ni 合金粉末混合(Ni6Nb7、Ni3Nb),在 800 ~ 1 500 ℃ 下加压烧结(10 ~ 200 MPa)。 Mo合金中 Ni 与 Nb 含量低于 50% (原子数分数),其中Nb 含量低于 20% (原子数分数)。 该专利避免了使用 Mo、Ni、Nb 粉末作为原料,解决了合金化不充分造成的 Ni 铁磁相的残留,稳定了溅射速度,提高了靶材寿命。
专利(CN 102127741 A) [14] 提出了一种薄膜太阳能电池用高纯钼靶的制备方法。 该方法首先采用钼酸铵为原料,经焙烧获得三氧化钼,随后在 450 ~600 ℃高纯氢气气氛下进行一次还原得到二氧化钼,再在 950 ~ 1050 ℃进行二次还原得到 Mo 粉,然后经过混料、筛分、等静压成型后,在中频感应炉中于 1 950 ~ 2 000 ℃烧结,通过大功率电子束熔炼提纯,经锻造、热轧、热处理退火、机械加工、超声波清洗、钎焊等工序制得高纯度、高密度和均匀性良好的钼靶。 该专利的之处在于:(1) 通过高纯氢气多次还原氧化钼提高钼粉纯度;(2) 采用大功率电子束熔炼提纯有利于碳氧充分反应,提高脱氧效果;(3)大变形量热轧可确保钼靶材晶粒平均尺寸小于 50 μm。
专利(CN 103160791 B) [15]采用三氧化钼、氢氧化钠和钼金属为原料,经过反应、球磨、过筛和热压工序制成钠掺杂钼平面溅射靶材,其中钠的原子数分数为 1% ~ 10% ,钠的掺杂能够大幅度提高铜铟镓硒薄膜电池的转换效率。
专利(CN 114411103 A) [16] 公开了一种大尺寸钼靶材的制备方法。 其方案具有以下优点:(1) 采用“氨溶 + 阳离子交换” 对原料粉末进行针对性提纯,可有效去除碱性金属(如 K、Na 等) 和过渡族金属杂质(如 Fe、Ni 等);(2)通过“预锻 + 交叉轧制 +高温退火” 的工艺设计,有利于获得微观组织均匀可控、晶粒细小、晶粒取向分布均匀的靶材;(3) 通
过表面化学腐蚀解决了传统轧制存在的变形不均匀问题。
专利(CN 114318256 A) [17] 公开了大尺寸钼溅射靶材及采用化学气相沉积法的制备工艺。 具体为:通过钼与三氟化氮反应制备出粗品六氟化钼,随后经真空蒸馏法和吸附法提纯得到高纯度六氟化钼,再在还原气氛下,经过化学气相沉积在基体材料上沉 积 金 属 钼。 该 方 法 所 制 备 靶 材 纯 度 高(99.999 9% 以上),致密度高(不低于 99.5% );此外,该方法在化学气相沉积设备中一步完成,产品一致性优于传统钼靶材,且可用于生产直径 500 mm以上的大尺寸钼靶材。
专利(CN 105648407 B) [18] 公开了一种高致密度钼铌合金靶材的制备工艺。 以钼粉为原料,添加5% ~ 15% (质量分数)铌粉、0.1% ~ 0.8% (质量分数)氢化锆进行混合,经过冷等静压成型,再进行真空烧结。 该发明的特点在于利用氢化锆的活化作用,通过粉末冶金直接制备高致密钼铌合金靶材。
专利(CN 10943990 A) [19] 利用氢化铌的活化作用,采用粉末冶金工艺制备高致密度、高含量钼铌合金溅射靶材。 专利(CN 110257784 A) [20] 同样采用粒度更小、表面积更大的氢化铌替代铌粉,提高扩散速率及烧结致密度,同时氢化铌分解释放的氢气具有还原作用,可降低钼铌合金中的氧含量,提高靶材纯度。
专利(CN 105568236 B) [21]发明了一种高纯、高致密、大尺寸 MoTi 合金溅射靶材的制备方法。 将钼和氢化钛原料在氩气气氛下进行混合并采用冷等静压压制成型,随后在真空烧结炉中进行两段烧结,轧制、退火、机械加工获得成分均匀、无偏析且晶粒尺寸小的靶材。
专利(CN 106513664 B) [22] 采用钼酸钾为原料制备钼钾合金靶材,避免了杂质的引入,所制备靶材密度高、成分均匀,镀膜效果好。高世代钼靶材对靶材纯度、晶粒尺寸、致密度提
出更高的要求,常规方法生产成本高、成品率低。 基于此,专利(CN 108642457 B) [23]公开了一种方法简单、生产成本低、成品率高、利于工业化生产的高世代钼靶材的制备方法。 具体为:将两种不同粒径的钼粉在真空下混合后过筛,进行等静压处理,再烧结、热轧、真空退火。 该方法制得靶材致密度超过99.5% ,靶材内部无气孔、裂纹、分层、夹杂等缺陷,靶材表面粗糙度小于 0.6 μm, 平均晶粒不 超 过80 μm。
相比平面靶材,管状钼合金溅射靶材利用率更高(理论上可达 70% ),得到国内外的广泛研究和应用。 专利(CN 110158042 B) [24] 先通过制备大颗粒钼铌粉体,提高粉体成型时的流动性,同时采用粗细粉体级配的方式提高松装密度,从而制得成分均匀、无偏析、晶粒细小( 小于 50 μm) 的钼铌合金旋转靶材。
专利(CN 114231940 A) [25] 将六羰基钼颗粒在高纯氢气和氩气气氛中加热到 40 ~ 60 ℃使其气化,再利用化学气相沉积法在预热基体材料上进行沉积,从而制得钼溅射靶材。 其优势在于成膜速度和成膜质量可以通过控制气体流速、流向进行调控,同时调整沉积时间、沉积基板材质、形状和尺寸,可以沉积不同厚度、不同尺寸、不同形状的钼靶材或钼靶材坯料,且由于沉积温度低,不会产生污染废气。
专利(CN 111254396 A) [26] 公开了一种钼钨合金靶材的制备方法。 其特点在于以钼粉、钨粉、三氧化钨粉体作为原料,利用三氧化钨与氢气反应得到烧结活性更高的新鲜钨粉,提高烧结致密化,减少缺陷,提升靶材品质。
钨钼因密度差异大易造成组织出现偏析,影响靶材组织均匀性,且热轧法制得靶材通常具有取向性,热等静压技术成本较高并增加了工艺复杂性。
专利(CN 111893442 B) [27]针对以上问题,提出了一种钨钼溅射靶材制备方法。 其特点在于:(1) 使用密度与 Mo 更接近的三氧化钨替代钨,在氢气气氛下两次高温处理原位还原得到均匀混合的钼钨混合粉体,提高靶材烧结均匀性;(2)通过高能球磨细化粉体,提高粉体烧结活性,获得高致密性的坯体;(3)采用冷等静压成型并进行预烧,促进易挥发非金属元素(如氧)的脱除。
专利(CN 111534800 B) [28] 将高纯的钼粉和铌粉进行压制,并在氢气下预烧,降低钼铌中的氧含量和杂质,基于所制备的高纯度、低含氧量、高振实密度钼铌合金粉末,提出了一种热等静压制备大尺寸钼铌平面靶材的方法。
专利(CN 106567047 A) [29] 采用氮化硼和石墨的组合模具热压制备钼铌合金,有效阻止了渗碳现象,获得了高致密度、高纯、微观组织可控的钼铌合金靶材。
1.2 混粉工艺优化
专利(CN 102337418 B) [30] 针对传统等静压结合烧结工艺制备钼铌合金烧结致密度不足、满足溅射靶材要求问题,提供了一种工艺简单、易实现工业化生产的钼铌合金板的制备方法,所制备靶材密度不低于 9.85 g / cm3。 该发明的特点在于采用振动压制方式对混合得到的钼铌合金粉体进行压坯,振动频率为 2 000 ~6 000 Hz,压制力为 10 ~30 MPa,
保压时间为 30 ~ 60 s;随后在 1 900 ~ 2 100 ℃ 真空烧结 6 ~ 10 h。
专利(CN 105887027 B) [31]在混合钼、铌粉体时加入过程控制剂(硬脂酸锌、棕榈酸、硬脂酸乙酯、聚乙烯醇和硬脂酸中的一种或几种),在球磨过程中过程控制剂能够包覆在金属粉末表面,形成一层润滑薄膜,降低粉末表面能,减少了粉末间的冷焊,从而解决了粉末粘球和粘罐问题,同时缩短了球磨时间。
溅射靶材的晶粒均匀性在很大程度上影响着薄膜质量和电子元器件性能。 因为靶材不同区域晶粒尺寸的差异会引起溅射速度的差异,进而造成薄膜厚度不均匀。 因此,如何提高溅射靶材晶粒均匀性是平 面 显 示 领 域 面 临 的 关 键 难 题。 专 利 ( CN109355632 B) [32]提出了一种提高溅射镀膜用钼及钼合金溅射靶材晶粒均匀性的方法。 其特点在于:
采用球磨—分级联合处理减少钼粉还原过程中的硬团聚,从而坯体烧结的微观晶粒均匀性以及溅射镀膜微观和整体均匀性。
专利(CN 103255379 A) [4] 基于 MoW 合金导电性好、抗氧化且膜应力低等优点,提出了一种 MoW合金平面溅射靶材的制备方法,克服了现有方法制得成分均匀、无偏析、晶粒细小靶材的难点。 该发明的特点之一在于采用机械合金化技术实现钼和钨原子级别的混合,在固态下实现了合金化,显著提高了 MoW 的活性,降低了 MoW 的烧结温度,从而提高了合金致密度、降低了晶粒尺寸。 类似地,专利(CN 105154740 A) [33] 公开了一种机械合金化制备铌钼靶材的方法。
专利(CN 108374152 B) [34] 通过机械混合使钼粉均匀渗入海绵钛孔隙中以确保钼粉不发生泄漏,同时在真空自耗电弧熔炼炉中进行熔炼,促使合金铸锭成分均匀化,从而制备出 100% 致密的、成分均匀的 钼 钛 合 金 溅 射 靶 材。 类 似 地, 专 利 ( CN109811318 A) [35]以溅射法生产的 99.9% 纯度的钼合金为原料,采用电子束冷床熔炼工艺制备纯度大
于 99.98% 的钼溅射靶材。
专利(CN 102321871 B) [36] 发明了一种热等静压生产平板显示器用钼合金溅射靶材的方法。 将低氧含量的钼粉与添加的金属粉末(铌粉或钽粉) 在惰性气氛保护下进行混合造粒、过筛,液压成型制成靶坯,随后经冷等静压提高均一性,再热等静压烧结(压力 200 ~ 300 MPa,温度 1 200 ℃)。 该发明生产周期短、工序少、能耗低,所制备钼合金靶材致密度高、均匀性好、性能。
专利(CN 107916405 A) [37] 通过改进混粉工艺严格控制杂质的引入,提出了一种高密度、晶粒细且均匀的钼钽合金溅射靶材的制备方法。 该发明能够靶材吸氢脆化,提高靶材加工性能。 其特点在于:对钼粉和钽粉进行真空预烧处理,去除了粉体中的氢、氧及低熔点物质;在粉体混合时采用氩气保护减少杂质的混入;选择钼球替代钢球进行球磨,减少铁杂质的掺入。
1.3 轧制工艺和烧结方法
大尺寸钼板由于坯料重量及尺寸规格较大,制备中存在两个问题:一是在常规尺寸氢气炉中加热,二是直接加热轧制时钼坯降温严重,容易出现轧制开裂的现象。 专利(CN 102534519 B) [38] 针对上述问题提出了一种 LCD 平板显示器溅射靶材用大尺寸钼板的制备方法。 采用涂刷抗氧化涂层(玻璃粉、水玻璃、水按质量比 8 ~ 10∶ 1∶ 8 ~ 10 混合)和钢包套包覆的方式缓解加热和轧制时的氧化问题及坯料降温严重导致的开裂问题,并在次轧制后通过冷却抑制组织不均匀长大和再结晶,制备出尺寸均匀的等轴晶组织。
专利(CN 114411103 A) [39] 公开了一种大尺寸钼靶材及其制备方法,所述制作方法包括如下步骤:行粉体装模,随后进行冷等静压,再经过烧结,并采用一火二道次轧制法进行热轧处理,进行校平、热处理、机械加工和清洗,制得大尺寸钼靶材。
该方法采用一火二道次轧制法,有效了钼靶因持续高温造成的晶粒异常长大,制得的大尺寸钼靶材可以用于高世代线平板显示器。
专利(CN 112609162 A) [40] 公开了一种 LCD 钼靶材及其轧制方法。 采用三个火次进行轧制,避免了钼靶坯在轧制过程中发生板面绕曲及开裂现象,降低了操作难度,提高了成材率。 所制备靶材纯度达到 99.95% 以 上, 平 面 度 ≤1.3 mm, 致 密 度 超过 97% 。
纯 Mo 中引入置换固溶元素 Ti 形成 MoTi 固溶体,可改善钼的低温塑性并提高钼的再结晶温度。但 MoTi 合金多采用热等静压或热压烧结制备,对设备要求严格,限制了产品规格尺寸。 基于此,专利(CN 104532201 A) [41]提出了一种 MoTi 合金溅射靶材的制备方法。 将钼粉和钛粉在氩气中进行混料,随后冷等静压成靶坯,在氦气气氛下烧结。
G6 世代线以上的 TFT - LCD 产线主要使用长条型的钼靶。 通过多次轧制获得长条形钼靶材的生产效率不高,而热挤压方法制备的钼靶晶粒较大,致密度 满 足 使 用 要 求。 专 利 ( CN 111647860B) [42]将钼粉装入胶套进行冷等静压成型获得坯体,并在氢气氛围下烧结,再进行热挤压,退火、校平、机加工得到长条型钼靶。
专利(CN 111850495 B) [43] 采用阶段升温的烧结方式,通过控制升温速率,促使钼靶材致密化、均匀化。 该发明制备钼靶材晶粒尺寸小、纯度高( ≥99.97% )、致密度高(≥99.9% )。
专利(CN 110777343 A) [44] 在真空下采用微波烧结将钼生坯烧结成钼板坯,并通过电子束熔炼进行提纯,解决了传统方法烧结时间长、烧结温度高、晶粒粗大、杂质含量高、能耗高的问题。 所制备靶材晶粒细小均匀,具有一定的结晶取向,性能优良。
专利(CN 111230096 A) [45]将混粉工艺、脱气工艺和热等静压烧结工艺相互配合,致力于改善合金靶材的致密度。 该发明制得的铬钼靶材晶粒尺寸细小,致密度在 99% 以上,同时此工艺可有效保障产品不受外界氧化,确保产品纯度。
热等静压烧结制造的 Mo - Ni - Ti 合金靶材存在部硬度不均匀的部位,其中部硬度低的部位在机械加工时易变形,产生裂纹、缺损、脱落等问题;部硬度高的部位将造成切削刀具磨损,引起靶材表面粗糙度变大,导致溅射时异常放电。 基于此,专利(CN 111719125 A) [46] 提出了一种 Mo 合金靶材的制备方法,通过对混合粉体(Mo、NiMo、Ti 粉末)常温加压成型再加压烧结,并调整 Mo 合金靶材中Ni 和 Ti 的添加量,实现对 Mo 合金靶材维氏硬度的调节(340 ~ 450 HV),抑制机加时的靶材变形以及溅射时的异常放电。
专利(CN 104073771 A) [47] 将冷等静压制得的靶坯密封在真空石英管中进行烧结,采用多段升温,使 PVA 粘结剂充分挥发,制得钠掺杂钼合金靶材。
专利(CN 105714253 B) [48] 将钢膜和橡胶板结合进行冷等静压成型,解决了密封问题,克服了传统冷等静压压坯尺寸精度差的问题,并据此提出了一种大尺寸、细晶钼钽合金溅射靶材的制备方法。 该方法用于生产致密度大于 97% 的大尺寸靶材(长度2 m 左右,宽度 1.3 m 左右)。
1.4 其 他
专利(CN 105525260 A) [49] 公开了一种 Mo 靶坯和 Mo 靶材的制作方法,即对预压 Mo 粉进行脱气处理得到 Mo 靶坯,再进行热等静压获得 Mo 靶材(温度 1 300 ~ 1 400 ℃,压力大于 150 ~ 200 MPa,保压时间 3 ~ 6 h),克服了热压烧结中 Mo 靶材尺寸对模具尺寸和强度的依赖及单轴加压造成的 Mo 靶材内部组织不均匀问题。
随着智能手机和平板终端向柔性化发展,具有轻量、耐冲击和不易破碎等性质的树脂膜已被用于制造柔性 FPD。 但相比玻璃基板,树脂基板具有透湿性(高温高湿环境会导致布线膜的电阻发生变化),且通常在基板上形成层叠布线膜后,层叠布线膜不可避免地接触大气,这就要求层叠布线膜具有更高的耐湿性和耐氧化性。
专利(CN 102956158 A) [50]提出一种电子部件用层叠布线膜以及覆盖层形成用溅射靶材。 即在 Mo 中添加一定量的 Ni 和 Ti,制得Mo100 - x - yNixTiy(10≤x≤30,3≤y≤20)覆盖层,用于覆盖以 Al 为主要成分的主导电层。 Ni 的添加可提高覆盖层的耐氧化性,改善纯 Mo 在大气中加热后的氧化变及电接触性恶化问题。 Ti 易与氧结合形成钝化膜,进一步提高其耐湿性,起到保护布线膜的作用。 同时该专利指出,通过控制 Ni 和 Ti 添加量,可确保加热工序中该覆盖层在与 Al 层叠时仍维持低电阻值。
专利(CN 114293160 A) [51] 以 Mo 为基体,提出了一种三元、四元钼合金靶材制备方法。 其中掺杂元素包含 0.5% ~ 40% (原子数分数) Ti 以及 0.5%~ 40% (原子数分数)的 Ga、Ni、Nd 中的至少一种元素。 所制得多元钼合金靶材相比二元合金 Mo 靶材,具有的耐氧化性、耐湿性、耐高温性能。 此外,低表面张力金属元素的掺杂改善了刻蚀性能。
专利( CN 109207941 A) [52] 提出了一种 MoNb合金靶材的制备方法(其中 Nb 的原子占比为 5% ~30% ),能够解决布线薄膜、电薄膜的基底膜与覆盖膜上出现的高电阻问题以及高成膜速度时靶材表面粗糙度变大问题,从而改善 TFT 性能稳定性。 其制备过程为:将 Mo 粉(平均粒径 4 μm)和 Nb 粉(平均粒径 35 ~ 115 μm)通过交叉旋转混合机进行混合
得到 10% Nb(原子数分数) 的混合粉体,随后填充至软钢制的加压容器中,并在 450 ℃下真空脱气、密封,然后在1250 ℃、145 MPa 热等静压处理 10 h 得到烧结体, 经机械加工和研磨后制作成直径180mm、厚度5mm的靶材。
钼镍铜多元合金薄膜不仅具有良好的热电和机械性能,而且气密性好、 不易潮解。 专利 ( CN110670032 B) [53]公开了一种钼镍铜多元合金靶材的制备方法。 该方法通过添加镍和铜降低钼合金熔点,借助烧结工艺参数调控解决了 3 种金属粉末熔点相差大导致的难烧结问题。 所制备钼镍铜合金靶材气密性好、耐湿耐潮、密度高、纯度高。
专利(CN 113319539 B) [54] 提供了一种大尺寸面板钼靶的制备方法。 具体步骤为:将靶材及背板进行粗铣和精铣,然后将靶材与背板进行钎焊,然后进行校正、烘干、抛光以及喷砂处理。 该方法提高了钼靶与背板的结合率,提高了产品的合格率,减少了资源浪费。
专利(CN 103154306 A) [55] 涉及一种含钼靶材制备方法,包含二元合金( MoTi)、三元合金( MoTi中加入 Ta 或 Cr 作为第三主金属元素)。 其具体步骤为:将钼粉、钛粉和钽粉(或铬粉) 按一定比例在V 型混料机中混合约 20 min,在 23 ℃ 条件下,通过单向压制法( 压力约 470 MPa) 压实得到直径约95 mm 的颗粒,将压制颗粒封装在低碳钢罐内进行热等静压处理(120 MPa,1 325 ℃,4 h),将热等静压后的材料加工成直径约 58.4 mm、厚度约 6.4 mm的靶材。 该发明制得的靶材在较低刻蚀速率下具有一定的优势,且溅射得到的薄膜对基材有较强的粘附性及低的电阻率。
2、 结 论
基于对上述专利的分析可以看出,钼及钼合金溅射靶材的制备主要采用粉末冶金技术,需要经过粉末混合、压制成型、烧结、压力加工和机加工等多道工序。 制备高质量的钼合金溅射靶材往往需要进行压制和烧结、多道次的轧制与反复的热处理。 由于热等静压或热压烧结设备规格有限,限制了产品的尺寸规格。 因此,开发一种方法简单、成本低、成品率高且利于工业化生产的高品质大尺寸钼合金溅射靶材制备方法具有重要的意义。 此外,目前 Mo 合金靶材中主要添加元素有 Nb、Ti、Ta、W 等,鉴于每种掺杂元素的作用和性能各不相同,而三元及多元钼合金靶材的研究和应用还不够全面,因此针对不同应用领域对钼合金薄膜性能的不同需求,通过成分设计与微观组织调控开发出新型组分钼合金靶材将是一个重要的发展方向。
废钼回收的经济效益与成本分析
废钼回收的盈利空间受国际钼价、回收成本和下游需求三重影响。当前钼价波动较大(约20-40美元/磅),回收企业需灵活调整采购策略。成本方面,物流、分选和化学试剂占总支出的60%以上,尤其是低品位废料的提纯成本较高。但相比原矿开采,废钼回收可节省50%以上的能源费用,长期看经济效益显著。部分企业通过规模化回收和工艺创新(如废催化剂协同处理)降低成本,利润率可达15%-25%。
钼是一种化学元素,符号为Mo,原子序数42,是一种银白的过渡金属。钼具有高强度、高熔点、耐腐蚀、耐磨研等特性,这些特性使得钼在众多领域都有广泛的应用。
在金属市场中,钼虽然不像黄金、白银那样为大众所熟知,但它却有着举足轻重的。从产量和储量来看,钼资源储量相对集中,主要分布在美国、中国、智利等国家。中国是世界上钼资源为的国家之一,同时也是大的钼生产国和消费国。
钼在钢铁工业中扮演着的角。它是一种优良的合金元素,能够提高钢的强度、硬度、韧性和耐热性等性能。在不锈钢中加入钼,可以增强其抗点蚀和缝隙腐蚀的能力,广泛应用于化工、海洋等领域。在工具钢和高速钢中,钼能提高刀具的耐磨性和切削性能,使得加工效率大幅提升。以下是钼在不同类型钢铁中的作用对比:
钢铁类型
钼的作用
不锈钢
增强抗点蚀和缝隙腐蚀能力
工具钢和高速钢
提高耐磨性和切削性能
耐热钢
提高高温强度和抗氧化性能
除了钢铁工业,钼在电子、化工、能源等领域也有重要应用。在电子行业,钼因其良好的导电性和热稳定性,被用作电子管、晶体管和集成电路的电材料。在化工领域,钼化合物是重要的催化剂,可用于石油加氢精制、有机合成等过程。在能源领域,钼基合金被用于制造燃气轮机的叶片、火箭发动机的喷嘴等高温部件。
从市场角度来看,钼的价格波动受到多种因素的影响,包括经济形势、钢铁行业的需求、钼矿的供应情况等。当经济增长强劲,钢铁需求旺盛时,钼的价格往往会随涨;反之,当经济增长放缓,钢铁行业需求下降时,钼的价格也会受到抑制。此外,钼矿的开采和生产受到资源储量、开采成本、要求等因素的制约,供应的稳定性也会对价格产生影响。
总的来说,钼作为一种重要的战略金属,在金属市场中具有不可替代的。它的广泛应用和性能,使得其在推动现代工业发展和科技进步方面发挥着重要作用。随着经济的不断发展和科技的不断进步,钼的需求有望继续保持增长态势。
钼是一种金属元素,通常用作合金及不锈钢的添加剂。它可增强合金的强度、硬度、可焊性及韧性,还可增强其耐高强度及耐腐蚀性能。钨钼制品厂家表示,尽管钼主要应用于钢铁领域,但由于钼本身具有多种特性,它在其它合金领域及化工领域的应用也不断扩大。
实验明,钼化合物具有低的毒性,这是钼区别于其它重金属的显著特征之一。
钼资源:
1、储量
钨钼制品厂家告诉大家,钼从来不以天然元素状态出现,而总是和其它元素结合在一起。虽然发现的钼矿物许许多多,但唯 一有工业开采价值的只有辉钼矿(MoS2)-一种钼的天然硫化物。矿床中,辉钼矿的一般品位为0.01%~0.50%,并常常与其它金属(是铜)的硫化物结合在一起。
2、矿床
钼矿床可分为下面三种类型:
原生钼矿,主要提取辉钼矿精矿;
次生钼矿,从主产品铜中分离钼;
钨钼加工厂家提醒,共生钼矿,这类钼矿床中钼和铜的工业开采价值均等。
在化学元素周期表中,钼元素不怎么引人注“钼”,它不像铝、铁那样常见,不如铂、金贵重,更不似氧、氢那般构成了生命的主体。然而,钼元素与人类的关系其实密切,而关于钼元素的方方面面,有一些趣事你可能并不了解。
钼曾被误认为铅
虽然早在14世纪,人们就懂得利用含钼的钢铁来锻造军刀,但那个时候,人们还没有意识到钼元素的存在。原因在于,钼元素在地壳中的含量约为百万分之一,分布也比较分散,属于比较稀有的金属。而且,钼元素往往不是以单质的形式存在,主要与硫结合成化合物,形成辉钼矿,或者偶尔与铅、铜组合,生成铅钼矿和铜钼矿。
16世纪之前,当人们发现辉钼矿的时候,看到它为铅灰,具有金属的光泽,而且辉钼矿多以细微柔软的鳞片状产出,具有挠性(金属或矿物受力发生变形,在作用力失去之后不能恢复原状的性质称为挠性,与“弹性”相对),摸起来还有种油腻的感觉。这和石墨的性质十分相似,所以辉钼矿被误以为是石墨。后来,人们在寻找铅矿石的时候,发现辉钼矿的外观类似于方铅矿,于是,又把钼误认为是铅。所以,人们便用古希腊语中的“molybdos”(意思是“铅”)命名辉钼矿。
直到1778年,德国化学家卡尔·舍勒才首次实,钼辉矿并不是方铅矿,也不是石墨,而是一种新的矿物,含有新的元素。但是,舍勒没有办法将这种新的元素从矿石中分离出来,所以他没能成为个发现钼元素的科学家。有趣的是,舍勒被后世称为“倒霉蛋科学家”,他的坏运气就是从错失钼元素开始的,后来舍勒又从空气可以助燃的实验现象中差点发现了氧气,但却因为迷信燃素说而将发现氧气的机会留给了安托万·拉瓦锡。
在舍勒之后,其他科学家也试图从辉钼矿中提取出新元素,他们让辉钼矿发生氧化反应,然后将粉末放入水中,形成钼酸,但仍然无法从中析出钼金属。终于,在1781年,瑞典化学家彼得·海基尔姆幸运地摘取了科学果实。他将碳粉、亚麻籽油和钼酸混在一起,搅拌成糊状,然后用封闭的坩埚对这一团“浆糊”加热。终于,海基尔姆用这样的“碳还原法”将新的金属从辉钼矿中分离出来,他随即将该金属命名为“钼”。至此,人们才开始了解到钼元素的真面目。
战争使钼名扬天下
1781年,人们开始懂得如何得到金属钼,但此后的100多年里,全世界金属钼的总产量也不超过10吨。由于钼元素易于氧化,且冶炼和加工水平有限,人们似乎还不知道如何将这种金属大规模地应用到工业生产中来。
不过,钼元素适合重工业的优点还是有目共睹的,它硬而坚韧、耐腐蚀、耐高温,熔点仅次于钨、钽,它注定会成为人类重要的工业原料。1891年,法国施耐德公司率先将钼作为合金元素生产出了含钼的钢板,发现其性能,而且钼的密度仅是钨的一半,钼便逐渐取代钨成为炼钢的合金元素。到了20世纪,人类爆发了两场规模空前的世界大战,统计资料显示,在次世界大战中,钼的年产量从数吨瞬间飙升到了100吨,而到了二战时期,又增长至1万吨。为何战争促进了钼的生产?这是因为它太有用了。
我们知道,“陆战”——坦克就是在一战中发明的。初,英国人为了增强坦克的防御力,给坦克安装了75毫米厚的锰钢板,但这种笨重的坦克在战争中表现得并不怎么样。后来,英国人通过试验,将锰钢板换成钼钢板,在不削弱防御力的前提下使得坦克的厚度减了50毫米,结果,更加机动灵活的坦克才得以大显神威。
同样,德国的攻坚——“大贝尔莎”巨炮,也是用钼钢做成的。一战前期,应德国总参谋部的要求,德国工业巨头克虏伯公司研制出了史无前例的重炮,并以古斯塔夫·克虏伯的妻子贝尔莎命名。“大贝尔莎”的口径为420毫米,炮身重43吨,需要200位德国军人花6个星期才能组装完毕。更吓人的是,“大贝尔莎”的重820千克,射程15千米,再坚固的工事也经不住它来这么一发。克虏伯之所以能够研制出威力如此惊人的巨炮,其秘诀就在于使用了材质的钼钢来制作炮身,因为当“大贝尔莎”发射时,只有耐高温的钼能够抵御产生的热量,以免熔化炮身。
到了第二次世界大战,钼元素同样发挥着重要的作用。当时,战场上的坦克莫过于德国的式坦克,其类型包含Ⅰ型和Ⅱ型两种。从1942年服役至1945年德国投降,式坦克一直活跃于战场线,它所向披靡,抵挡。不过,在库尔斯克会战中,苏联人俘获Ⅱ型坦克后对其进行了测试,发现Ⅱ型坦克并不像传说中的那样坚不可摧,虽然它装甲很厚,但是防御效果相对于Ⅰ型并未有较大提升。之所以出现这种状况,其实是由于德军所占领的挪威克纳本钼矿在1943年被盟军轰炸,从而使德军失去了钼的来源。战争初期,德军的Ⅰ型坦克都采用了钼钢,这种钼钢耐腐蚀,在高温条件下仍然具有较高的强度,而Ⅱ型坦克的厚装甲中已经无钼可用,所以影响了德军装甲部队的战斗力。
钼是多才多艺的金属
两次世界大战使人们意识到钼对于军事的重要作用,战后,钼的年产量由10万吨上升到如今的20多万吨。钼在“战争金属”美誉的同时,其应用范围也越来越广,是在核能、医疗等高科技领域发挥着越来越重要的作用。
2018年,俄罗斯的莫斯科工程物理学院的科学家们发表了一项关于核燃料保护套的研究,他们使用钼合金代替现有的锆合金来用作核燃料保护外壳,可以提高核电站的性。
在现有的核电站中,铀燃料棒是安装在锆合金保护外壳内的。锆合金具有很高的耐腐蚀性,而且锆几乎不会和中子反应,所以是好的核燃料棒保护外壳。但是,在端情况下,比如由于地震和海啸导致应急冷却系统出现故障时,核反应堆内冷却水的水平面会一直下降,使铀燃料棒处于裸露状态,那么冷却不足会使高温的锆合金外壳与高温水蒸气产生氢化作用(即锆水反应),这会导致反应炉熔毁以及氢气爆炸——2011年的日本福岛核电站事故就是这样发生的。如果想要避免类似的事故,办法之一就是寻找一种比锆合金更优秀的核燃料棒保护外壳,而在众多金属材料中,只有钼同时满足比锆更耐腐蚀、更耐热、有更高的导热性以及更小的中子截面积(意味着不与中子反应)的条件,因而特制的钼合金很可能会在未来成为核电站防护装置的主要材料。
钼元素还被应用于医疗实践。比如,锝99是应用广泛的放射性造影剂,不过,锝99只能由一种方式制备,那就是钼99衰变。钼99是钼的一种放射性同位素,它的半衰期为2.75天,半衰期过后,钼99衰变为锝99。钼99的半衰期理想,这个时间不但了钼原子在原料地到医疗场所的运输过程具有的稳定性,而且了锝99的放射性可以在短时间内。如果半衰期过短,在运输过程中,钼原子可能产生放射性辐射的危险;如果半衰期过长,将影响医疗诊断的效率。在核医学中,80%的医疗到了锝99,而在美国,每天使用锝99的诊断就达 55000多起,所以,钼的重要性不言而喻。
生命对钼很敏感
生物老师常常会讲一个故事:某一年,新西兰的一个牧场遭遇了干旱,大量牧草枯萎而死,但有一条矿工经常踩踏的小路边上生长着茂密的绿草。这是为什么呢?原来这里的矿场是钼矿,矿工们每天工作,身上难免会沾上矿渣,当他们走路时不经意间将矿渣撒落在小路上,就如同上天赐予的“大补丸”,给路边的小草提供了的养料。另外,科学已经明,对农作物施加钼肥,可以增强农作物的抗病、抗旱和抗旱能力,提高产量。比如,根据科学家的统计,每亩农田施加钼肥20克,可使小麦增产35%,而大豆则可增产47%,蚕豆增产8%,绿豆增产32.8%,番茄增产75%。
钼不仅是植物生长和发育中的微量元素,也是植物发挥固氮功能的重要元素。氮是生命之源,有了氮,植物才变得有营养。然而,植物并不能直接吸收空气中的氮气,它们需要在固氮菌的帮助下,通过化学反应将氮元素吸收并存储起来。固氮菌为植物固氮的过程很复杂,需要一种催化剂,名为固氮酶,金属钼正是固氮酶的重要成分。每年,植物固氮总量约1亿吨,远超过人工固氮量,这都是钼元素的功劳。
不仅植物需要钼,我们人体内也需要钼,只不过需量少。成年人体内大约只有9毫克钼,而且它们分散在身体的各个部分。虽然如此,我们对于钼还是敏感的。比如,钼与我们头发的颜有关,因为钼元素会使头发偏红褐。又比如,我们的情绪也容易受钼的影响,有它,我们会精力充沛,神气十足,缺少或无它,我们会感到疲惫不堪,浑身乏力。钼为什么有这么大的本事呢?原因在于,钼是两种在新陈代谢中起重要作用的酶的组成成分,一是黄嘌呤氧化酶,一是亚硫酸盐氧化酶。这两种酶有钼存在时才具有活力,没有钼,就会失去活力,起不了催化作用。
由于钼在食物中比较广泛地存在着,小麦、豆类、猪肉、牛奶、蜂蜜都含有钼,人对于钼的需要量也不高,所以我们一般不会缺钼。如果身体摄入多余的钼,反而会引起金属中毒。
由此看来,钼这种罕见的元素,与我们的日常生活还真息息相关呢。
钼:稀缺战略小金属,存在形式多样,单一和铜、钨钼矿伴生共存
钼是一种银白金属,熔点 2617℃,沸点 4612℃,比重 10.22(20℃)。其物理化学性 质与钨相似,在高温下的蒸气压很低,蒸发速度小。
钼的性能是导电性和导热性强,硬 度和强度限比钨低,加工性能稳定,受压较易加工,在没有氧化剂的条件下,钼对无机酸 具有突出的耐腐蚀性能。
但在稀硝酸、沸腾的盐酸和热的王水,200—250℃的浓硫酸以及氢 氟酸和硝酸的混合物中,能迅速地被溶解,在空气中温度大于 600℃时,钼易氧化。
钼行业产业链上游是矿山,主要负责钼矿的采选和钼精矿的生产;中游是焙烧厂,负责 钼精矿的焙烧和冶炼,产生各种产品;下游是钼的相关应用,包括钢铁行业、石油行业、军 工材料等。
中国钼资源储量,占比超 50%
钼资源分布高度集中。根据 USG 数据,2021 年钼储量 1600 万吨,中国储 量 830 万吨,占比超过 51%,是钼资源的国家;
美国和秘鲁分列第二、第三位, 拥有 270 万吨和 230 万吨钼储量,CR3 资源储量占储量的 83%。
中国钼矿资源,总储量 830 万吨,探明储量的矿区 222 处,分布于 28 个省。河南 省钼矿资源,钼储量占全国总储量的 30.1%,其次是陕西和吉林,三省钼储量合计占 全国 56.5%以上。
国内钼矿矿床规模大,陕西金堆城、河南栾川、辽宁杨家杖子、吉林大黑 山钼矿均属于世界级规模的大矿。
下游应用广泛,市场集中度较高
钼应用广泛,主要作为生产低合金钢、合金钢、不锈钢、工具钢、铸铁、合金、 钼基合金等的添加剂。
据 IMOA 统计,2020 年钼消费结构为:合金钢 39%、特种不锈 钢 24%、合金工具钢 7%、铸铁/铸钢 8%、镍合金 3%、钼金属 6%、化工 13%。
中国钼矿石行业发展较为成熟,现已形成较为稳定的竞争格。中国钼矿石行业属于资 本密集型、资源依赖型及下游驱动型行业,具有较高的准入壁垒。
当前,中国钼矿企业均具 有成熟的下游销售渠道,受下游市场需求旺盛影响,同业企业间竞争压力小。
根据年 产量分为大中小型企业,其中,年产 3 万吨以上为大型企业,1-3 万吨为中型企业,1 万吨 以下为小型企业。
中国钼矿石行业市场集中度较高,规模以上从事钼矿石开采、洗选等相关业务企业数量 约 30 余家,中国钼矿企业市场规模两级分化较为明显。、金堆城钼业等头部企业 占据市场份额超过 50%。
供不应求确定性高,钼价有望维持高位,国内产量增长有限,海外无新增产能
根据钼协会(IMOA)公布的数据显示,2021 年钼产量为 26.12 万吨,比 2020 年的 27.32 万吨下降了 4%。
2021 年钼消费量为 27.72 万吨,比前一年的 24.48 万吨增 长了 13%,供应缺口 1.6 万吨,缺口比例 5.8%。
中国是大的钼生产国,从 2020 年的 88450 吨增加到 2021 年的 100833 吨,同比增加 14%,是 2021 年唯一产量增长的地区,其中 2020 年受伊春鸣尾矿库泄漏事件及陕西暴雨影响,产量有所下滑。
南美是第二大钼生产地区, 产量为 82236 吨,比上一年的 90219 吨下降 9%;北美地区产量为 58332 吨,比 2020 年的 69717 吨减少 16%;其他国家和地区的产量降幅大,从 2020 年的 24857 吨下降到 19822 吨。
国内钼矿上市公司主要有、和吉翔股份。其中,金钼股份拥有的 资源储备和领先的产业规模,钼生产经营规模位居前列。
公司正在运营自有矿山金堆城 钼矿和汝阳东沟,同时公司还参股了沙坪沟钼矿和吉林天池季德钼矿,2021 年公司钼产量 为 2.12 万吨。
目前正在运营三道庄钼矿和上房沟钼矿,新疆钼矿为储备资源,目 前尚未开发,2021 年公司钼产量为 1.6 万吨。吉翔股份正在运营内蒙古乌拉特前旗沙德盖苏 木西沙德盖钼矿,2021 年钼产量为 3.9 万吨。
海外钼企业中,麦克莫兰自由港公司是大的钼矿生产商,其钼产品主要来源于北 美 7 个、南美 2 个矿山与位于美国科罗拉多州的两大钼矿 Henderson、Climax。
公司 2021 年钼产量为 3.86 万吨。为应对钼需求的增长,公司 2022 年计划在 Lone Star 铜矿、 Cerro Verde 矿山和两个钼矿分别扩大开采率,预计钼总年产量可达 4.09 万吨。
墨西哥集团 2021 年钼产量为 3.03 万吨,据公司年报披露,2022 年公司计划小幅增加钼产量,预计 2022 年产量达 3.2 万吨。公司将会持续在秘鲁 Apurimac 地区进行开发。
智利 Codelco 是 第二大钼生产商,公司 2020 年钼产量 2.8 万吨,2021 年由于 Chuquicamata 和 Andina 矿山减产,钼产量下降至 2.1 万吨。
钼作为公司铜矿副产品,由于未来几年铜矿计划产量无 明显变化,因此钼产量预计与 2020 年持平。
集团 Kennecott 公司 2021 年钼产量同比 下降 62.7%至 0.76 万吨,主要是受到相关机构干预导致,目前暂无扩产计划,预计未来几 年钼产量仍将维持在 2021 年的水平。
未来钼产量增量有限,海外市场无明显增量,国内市场有小部分增量出现。
2022 年将会对黑龙江铜山铜矿、福建紫金山罗卜岭铜(钼)矿、塞尔维亚博尔铜业 JM 铜矿、 塞尔维亚丘卡卢-佩吉铜金矿下带矿等 4 个地下大型斑岩型矿床进行崩落法采矿,钼作为伴生 产品将会有少量产量增加。
中高端钢材替代加快,下游需求旺盛
中国是钼消费量大的国家,钼消费量从 2020 年的 10.64 万吨上升到 2021 年的 11.14 万吨,增长了 5%,增幅小;欧洲的钼消费量居第二位,为 58921 吨,比 2020 年的 53025 吨增长 11%;
美国作为第四大钼消费国,钼用量从 2020 年的 20956 吨增加到 2021 年的 27170 吨,增长 30%,增幅大;日本的钼消费量为 23859 吨,比 2020 年的 20457 吨增 加了 16%。
近年来,国家制定了一系列产业支持中高端合金钢行业的发展,明确了具有高技术 含量且用于高端制造业的特钢产品的重要。
钼作为“战略稀有小金属”,其在传统钢铁 领域和领域需求都较为旺盛。一方面,我国正在大力推动传统基建、地产、水利的复 苏,因此国内对钢铁的需求明确,因此钼的需求也将稳步增长;
另一方面,在领域, 钼也发挥着重要作用。比如光伏领域,钼是薄膜板背电的金属材料之一;
再比如风力发电, 将发电叶片采用较薄的钼合金钢外壳和支撑框架可减重 20-40%。新能源行业的发展将 进一步促进钼的需求增长。
钢是在冶炼过程中加入了较多的合金元素及采取了的生产、加工工艺,特钢的 化学成分、组织结构以及机械性能均优于一般钢铁。
在汽车、机械、化工、船舶、铁路、航 空航天、国防军工等对钢材质量要求较高的领域得到广泛使用。
未来随着航空航天、国防军 工的发展,以及诸多新兴产业的大发展,特钢的应用领域将持续扩展,需求量也将增加。
钢又被称为特钢或特种钢,钢产品种类,可分为碳素钢、低合金钢和 合金钢三大类。
按用途划分,特钢可分为结构钢(碳素结构钢和合金结构钢)、工具钢 (碳素工具钢、合金工具钢、高速工具钢)以及用钢(齿轮钢、轴承钢、弹簧钢、不锈 钢、高强度钢和高温合金)。
按技术含量和产品档次分,特钢产品可大致分为高端、中端和低端三个层次。其中,低 端产品是以碳素结构钢(碳素钢)为代表;
中端产品是以合金钢(不锈钢、工具钢、模具钢、 高速钢除外)为代表;高端产品是以不锈钢、工具钢、模具钢和高速钢为代表的产品。
特钢应用广阔,主要包括国防、电力、石化、核电、、汽车、航空、船舶、铁路等 行业的高端、特种装备制造领域。
随着我国经济结构优化调整逐步深化,制造业不断转型升 级,以军工产业、核电工业、高速铁路及汽车工业为代表的高端制造业迎来了、可持续 发展,有望进一步拉动中高端特钢的需求。
钢行业主要有两种工艺流程,一是长流程,是指以铁矿石、焦炭为主要原材料,利 用高炉冶炼得到液态铁水,铁水经过氧气转炉吹炼配以精炼炉得到合格钢材,高炉容积较大, 熔炼后产品加工通常采用连铸、连扎成型工艺,适合大批量生产;
二是短流程,是指以废钢 和合金为主要原材料,废钢经破碎、分选后装入电炉来熔炼废钢,并配以精炼炉完成脱气、 调成份、调温度、去夹杂等功能,得到合格钢材,电炉容积较小,熔炼后产品加工通常采用 模铸、锻造成型工艺,适合小批量生产。
目前我国钢产量占钢材总产量比重较低,远低于发达国家。2021 年我国钢产 量为 13789.14 万吨,占我国粗钢产量的比例约为 13.35%。
根据产业信息网的数据显示,2020 年日本钢产量为 1743.7 万吨,占日本粗钢产量的比重为 20.96%。
根据《我国钢行业的现状及发展趋势》一文,钢占比高的瑞典,比重为 55%,德国占比 22%, 法国、意大利占比 17%。
从细分产品来看,我国钢中非合金钢和低合金钢的占比较大。2021 年我国非合金 钢产量为 5939 万吨,占比 38.90%;低合金钢的产量为 4983 万吨,占比 32.63%。其次为 合金钢、不锈钢,其产量分别为 2932.7 万吨、1636 万吨,占别为 24.40%、4.07%。
中国钢铁行业正在经历结构调整,将向高性能高附加值的不锈钢、特种钢等合金钢方向 发展。
中国工业化及城镇化进程的加速推进,以及印度、巴西、中东等其他新兴国家 钢铁产量仍将保持增长,也将进一步拉升对钼的需求。 中高端不锈钢增速明显加快。
根据中国特钢协会不锈钢分会数据显示,2021 年中国不 锈钢粗钢产量为 3063.2 万吨,同比增加 49.3 万吨,增长 1.64%,其中 Cr-Ni 钢(300 系)1506.7 万吨,同比增长 4.78%;
Cr 钢(400 系)526.7 万吨,同比增长 5.78%;Cr-Mn 钢(200 系)905.8 万吨,同比下降 6.07%。此外,2021 年中国双相不锈钢产量再高,达到 24.05 万吨, 同比增加 4.9 万吨,同比增长 25.67%。
合金钢与非合金钢增速分化显著。近年来在国家支持下以及钢铁行业结构转型的背 景下,合金钢与非合金钢分化明显,2020 年和 2021 年合金钢产量增速分别为 14.89%和 2.23%;非合金钢产量增速分别为 7.48%和 0.15%。
高速工具钢产量自 2015 年至 2019 年 逐年增加,2020 年和 2021 年受以及产业链影响出现下滑,未来在下游需求的 强烈带动下高速工具钢产量将逐步回升。
我们按钼初级产品下游消费结构把钼需求拆分成钢铁行业、钼金属和化工钼三大板块。
其中,钢铁行业钼需求拆分成合 结构钢、特种不锈钢(316 及 316L、双相不锈钢)、高速 工具钢、其他工具钢和高温合金钢。根据我们的测算,2022-2024 年国内钼需求量分别为 12.64、13.69、14.81 万吨。
供需紧平衡,钼价高位震荡
过去 20 年钼历史价格演变可以分为四大阶段: 在 2008 年经济危机之前,经济高速增长,直接拉动了合金钢和不锈钢需求。
钼消费随之扩张,钼供给匹配钢铁行业扩张速度,进入供需错配,这一阶段钼价迅速 冲高,虽有震荡当在很长一段时间保持高位;
2008-2016 年,受经济危机影响制造业遭遇滑铁卢,此前累积扩张的大量产能 无法出清,行业转为过剩。钼价格断崖式下跌,并长时间处于低谷;
2016-2020 年,由于钼价格长期处于低迷状态,多个矿山产能关停推出,中国钼厂 商也达产减产协议,供给侧出现约束,钼价格逐渐出现反弹;
2020 年以后,肆海外冶炼产能停滞,大量钼精矿涌入国内,钼价格再次 出现回落;随着得到控制,经济逐步向好,2021 年钼价格再次飙升。
重点公司分析
金堆城钼业股份有限公司(简称“”)是钼行业内具有较强影响力的钼供应商,为钼协会执行理事单位、中国有金属工业协会钼业分会会长单位,被中国 矿业联合会授予“中国钼业之都”称号。
公司拥有钼采矿、选矿、冶炼、化工、金属加工、科研、贸易一体化全产业链条。主要 生产钼冶金炉料、化学化工、金属加工三大系列二十多种品质优良的各类钼产品,广泛应用 于钢铁冶炼、石油化工、航空航天、国防军工、电子照明、等领域。
公司拥有两大矿区金堆城钼矿和汝阳东沟钼矿,其中金堆城钼矿矿床形态简单,产状品 味变化均衡稳定,是世界级特大型钼矿床之一,矿石资源量约 48 亿吨,储量约 34 亿吨。
汝 阳东沟钼矿金属储量 2.8 亿吨,矿石天然品质优良,具有品位较高、含杂低、易于深加工、 适合大型露天开采等特点。
2021 年公司钼业务占比超过 84%,钼炉料营收占比为 56%,同比提升 18.1pct;钼金 属营收占比为 16%,同比提升 5.5pct;电解铜营收占比为 7%,同比下降 23.7pct。
公司通 过调整业务结构以及降本增效措施,毛利率从 2017 年的 7.66%提高到 2021 年的 21.95%。
公司主要从事基本金属、稀有金属的采、选、冶等矿山采掘及加工业务和矿产贸易业务。 目前公司主要业务分布于亚洲、非洲、南美洲、大洋洲和欧洲五大洲。
是领先的钨、钴、 铌、钼生产商和重要的铜生产商,亦是巴西领先的磷肥生产商,同时公司基本金属贸易业务 位居前三。
2012 年公司 A 股上市以来,公司加速化、多元化战略推进,持续布多金属品类。
2013 年澳大利亚 NPM 铜金矿、2016 年刚果(金)TFM 铜钴矿及巴西铌磷资产、 2019年第三大金属贸易公司 IXM,2020年再次 Kisanfu铜钴矿进一步增强铜、 钴资源布。
公司拥有的钨钼资源。公司是前七大钼生产商及大白钨生产商之一,从事钼、 钨、铁金属的采选、冶炼、深加工、科研等,拥有钼钨采矿、选矿、冶炼、化工等上下游一 体化业务。
主要产品包括钼铁、仲钨酸铵、钨精矿及其他钼钨相关产品,同时回收副产铁、 铜、萤石、铼等矿物。2021 年,钼金属产量为 16385 吨,钨金属产量为 8658 吨。
用途:
1,钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。
低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。 HI98130 不锈钢中加入钼,能改善钢的耐腐蚀性。
在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种耐高温部件。
金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。
二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂。钼是植物所的微量元素之一,在农业上用作微量元素化肥。
2,钼在电子行业有可能取代石墨烯
美国加州纳米技术研究院(简称CNSI)成功使用MoS2(辉钼,二硫化钼)制造出了辉钼基柔性微处理芯片,这个MoS2为基础的微芯片只有同等硅基芯片的20%大小,功耗低,辉钼制成的晶体管在待机情况下的功耗为硅晶体管的十万分之一,而且比同等尺寸的石墨烯电路更加廉价。
而大的变化是其电路有很强的柔性,薄,可以附着在人体皮肤。 HI8733辉钼是未来取代硅基芯片竞争者。领导研究的安德拉斯&midDOt;基什教授表示,辉钼是良好的下一代半导体材料,在制造超小型晶体管、发光二管和太阳能电池方面具有很广阔的前景。
同硅和石墨烯相比,辉钼的优势之一是体积更小,辉钼单分子层是二维的,而硅是一种三维材料。在一张0.65纳米厚的辉钼薄膜上,电子运动和在两纳米厚的硅薄膜上一样容易,辉钼矿是可以被加工到只有3 个原子厚的!
辉钼所具有的机械特性也使得它受到关注,有可能成为一种用于弹性电子装置(例如弹性薄层晶片)中的材料。 可以用在制造可卷曲的电脑或是能够贴在皮肤上的装置。甚至可以植入人体。
3,纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。
合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。
4,钼在其它合金领域及化工领域的应用也不断扩大。HI98128例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域。
由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。
扩展资料:
钼(mù)为人体及动植物的微量元素。为银白金属,硬而坚韧。人体各种组织都含钼,在人体内总量为9mg,肝、肾中含量高。
钼是一种过渡元素,易改变其氧化状态,在体内的氧化还原反应中起着传递电子的作用。在氧化的形式下,钼很可能是处于+6价状态。
虽然在电子转移期间它也很可能首先还原为+5价状态。但是在还原后的酶中也曾发现过钼的其他氧化状态。钼是黄嘌呤氧化酶/脱氢酶、醛氧化酶和亚硫酸盐氧化酶的组成成分,从而确知其为人体及动植物的微量元素。
钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。
在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级合金,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。
金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。
在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。
钼的化合物在农业肥料中也有广泛的用途。
一、钼矿原料特点
钼在地壳中的元素丰度约为1×10-6,在岩浆岩中以花岗岩类含钼高,达2×10-6。钼在地球化学分类中,属于过渡性的亲铁元素。在内生成矿作用中,钼主要与硫结合,生成辉钼矿。
辉钼矿(MoS2)是自然界中已知的30余种含钼矿物中分布广并具有现实工业价值的钼矿物。其他较常见钼的含钼矿物还有铁钼华([Fe3+(MoO4)8·8H2O]),钼酸钙矿(CaMoO4),彩钼铅矿(PbMoO4),胶硫钼矿镁(MoS2),蓝钼矿(Mo3O8·nH2O)等。
辉钼矿存在着多型,实验表明,其多型的出现与形成温度有关,2H型的辉钼矿形成温度高于3R型的辉钼矿。温度由低到高形成非晶质MoS2→胶体MoS2→3MoS2→2HMoS2。测温资料说明辉钼矿形成温度有较宽的区间,可自相当高温直到相对较低的温度,而大量形成于高至中温阶段。在热液作用下,MoS2在较酸性条件下沉淀,即辉钼矿在酸性条件下为稳定,当溶液转向中性时,钼变为可溶的硫代钼酸盐和钼酸盐而再活动。在低温和常温条件下,Mo4+在强酸性还原环境中生成胶硫钼矿(MoS2),它氧化后的产物是蓝钼矿(Mo3O8·nH2O)。外生作用中,钼呈Mo6+,具较强的活动性。它与铀相似,在接近中性或偏碱性的氧化与还原的过渡环境中稳定,由此生成多种含铀的钼酸盐矿物,如钼铀矿[(UO2)MoO4·4H2O],钼钙铀矿[Ca(UO2)3(MoO4)·(OH)2·11H2O]等。铁钼华[Fe2(MoO4)3·nH2O]是硫化矿石在酸性条件下(pH=3~5)形成的常见矿物。彩钼铅矿是含钼的铅锌矿在中性条件下的产物。
铼与钼的离子半径相近,故经常置换钼而富集于辉钼矿中,成为工业用铼的主要来源。辉钼矿中的铼含量往往与辉钼矿中3R型含量及成矿溶液中的铼含量有关。钼是发现得比较晚的一种金属元素,1792年才由瑞典化学家从辉钼矿中提炼出来。由于金属钼具有高强度、高熔点、耐腐蚀、耐磨研等优点,因此在工业上得到了广泛的利用。在冶金工业中,钼作为生产各种合金钢的添加剂,或与钨、镍、钴,锆、钛、钒、铼等组成高级合金,以提高其高温强度、耐磨性和抗腐性。含钼合金钢用来制造运输装置、机车、工业机械,以及各种仪器。某些含钼4%~5%的不锈钢用于生产精密化工仪表和在海水环境中使用的设备。含4%~9.5%的高速钢可制造高速切削工具。钼和镍、铬的合金用于制造飞机的金属构件、机车和汽车上的耐蚀零件。钼和钨、铬、钒的合金用于制造军舰、坦克、枪炮、火箭、卫星的合金构件和零部件。金属钼大量用作高温电炉的发热材料和结构材料、真空管的大型电和栅、半导体及电光源材料。因钼的热中子俘获截面小和具高持久强度,还可用作核反应堆的结构材料。在化学工业中,钼主要用于润滑剂、催化剂和颜料。二硫化钼由于其纹层状晶体结构及其表面化学性质,在高温高压下具良好的润滑性能,广泛用作油及油脂的添加剂。钼是氢制法脱硫作用及其他石油精炼过程中的催化剂组分,用于制造乙醇、甲醛及油基化学品的氧化还原反应中。钼桔是重要的颜料素。钼的化学制品被广泛地用于染料、墨水、彩沉淀染料、防腐底漆中。钼的化合物在农业肥料中也有广泛的用途。一、钼矿原料特点钼在地壳中的元素丰度约为1×10-6,在岩浆岩中以花岗岩类含钼高,达2×10-6。钼在地球化学分类中,属于过渡性的亲铁元素。在内生成矿作用中,钼主要与硫结合,生成辉钼矿。辉钼矿(MoS2)是自然界中已知的30余种含钼矿物中分布广并总氮具有现实工业价值的钼矿物。其他较常见的含钼矿物还有铁钼华([Fe3+(MoO4)8·8H2O]),钼酸钙矿(CaMoO4),彩钼铅矿(PbMoO4),胶硫钼矿(MoS2),蓝钼矿(Mo3O8·nH2O)等。辉钼矿存在着多型,实验表明,其多型的出现与形成温度有关,2H型的辉钼矿形成温度高于3R型的辉钼矿。温度由低到高形成非晶质MoS2→胶体MoS2→3MoS2→2HMoS2。测温资料说明辉钼矿形成温度有较宽的区间,可自相当高温直到相对较低的温度,而大量形成于高至中温阶段。在热液作用下,MoS2在较酸性条件下沉淀,即辉钼矿在酸性条件下为稳定,当溶液转向中性时,钼变为可溶的硫代钼酸盐和钼酸盐而再活动。在低温和常温条件下,Mo4+在强酸性还原环境中生成胶硫钼矿(MoS2),它氧化后的产物是蓝钼矿(Mo3O8·nH2O)。外生作用中,钼呈Mo6+,具较强的活动性。它与铀相似,在接近中性或偏碱性的氧化与还原的过渡环境中稳定,由此生成多种含铀的钼酸盐矿物,如钼铀矿[(UO2)MoO4·4H2O],钼钙铀矿[Ca(UO2)3(MoO4)·(OH)2·11H2O]等。铁钼华[Fe2(MoO4)3·nH2O]是硫化矿石在酸性条件下(pH=3~5)形成的常见矿物。彩钼铅矿是含钼的铅锌矿在中性条件下的产物。铼与钼的离子半径相近,故经常置换钼而富集于辉钼矿中,成为工业用铼的主要来源。辉钼矿中的铼含量往往与辉钼矿中3R型含量及成矿溶液中的铼含量有关。