宿州附近回收废钼价格查询
废钼回收的环保意义与政策支持
钼矿开采伴生重金属污染和生态破坏,而废钼回收可大幅减少环境负荷。每回收1万吨废钼,相当于减少30万吨矿石开采和10万吨二氧化碳排放。全球多国通过政策鼓励回收:欧盟将钼列为关键原材料,要求成员国提高回收率;中国《“十四五”循环经济发展规划》明确支持稀有金属再生利用。企业若通过ISO 14001认证或采用清洁生产技术(如废酸循环利用),还可获得税收优惠,进一步强化环保与经济的双赢。
1900年初,一个名叫Greenleaf whittier pickard的人制作了世界上台矿石收音机,随后RAC(美国无线电公司)进行工业化生产,至今已超过100年。(以上文字摘自网络)时至今日虽然无线电技术已飞速发展,却仍有许多人对矿石机“情有独钟”。现介绍几种可以检波的矿石,同一名称的矿石由于产地不同,形成的条件不同,所含其它物质种类和比例不同,也就造成了形状、颜及电性能等大差异。本帖仅供参考。
一、中自然铜:虽然在中医里称做自然铜,也叫方块铜或石髓铅,实际上是天然硫化铁矿石。外观多为规则的方块形,大小不一表面平坦,亮黄具金属光泽;有时表面呈棕褐,质坚硬但易砸碎。使用效果:检波点较少,灵敏度一般,稳定性一般。
二、方铅矿石:方铅矿是一种灰的硫化铅,晶体呈立方体,有时为八面体和立方体的聚形。强金属光泽,具弱导电性和良检波性。五、六十年代销售的活动矿石和固定矿石多为方铅矿石。使用效果:检波点较多,灵敏度较高,稳定性较好。
三、黄铁矿石:因其浅黄铜和明亮的金属光泽常被人误为黄金,故又称为“愚人金”。黄铁矿分布广泛,一般呈立方体、八面体、五角十二面体及其聚形。硬度较高小刀刻不动。使用效果:检波点一般,灵敏度一般,稳定性一般。
四、黄铜矿石:是一种铜铁硫化物矿物,常含微量金、银等。正方晶系,晶体相对少见,多呈不规则粒状及致密块状结合体,也有肾状、葡萄状集合体。黄铜黄,硬度低于黄铁矿,是一种较常见的矿石。使用效果:检波点少,灵敏度一般,稳定性一般。
五、辉钼矿石:是钼的硫化矿物。分别属于三方和六方晶系,呈铅灰、强金属光泽,通常多以片状、鳞片状或细小颗粒状产出。辉钼矿比指甲还软,摩氏硬度为1-1.5。使用效果:检波点较多,灵敏度高,稳定性较好。
六、红锌矿石:橙黄,带暗红光,六方晶系,成致密块状体。相应有锰-红锌矿、铅-红锌矿和铁-红锌矿。自然界不常见。使用效果:检波点多,灵敏度很高,稳定性较高。
七、钛铁矿石:是铁和钛的氧化矿物,是提炼钛的主要矿石。三方晶系,晶体一般为板状,晶体集合到一起为块状或粒状。灰到黑,有一点金属光泽。使用效果:检波点很少,灵敏度很低。稳定性一般。
八、镜铁矿石:赤铁矿变种,与石英伴生。复三方偏三角面体晶类,块状、鳞片状。红棕、钢灰、铁黑。使用效果:检波点少,灵敏度一般,稳定性一般。
九、软锰矿石:主要成份为二氧化锰,颜由浅灰到黑,具有金属光泽。软锰矿软,用手摸会像煤一样弄黑你的手。一般为块状、肾状或土状,有时具有放射纤维状形态。使用效果:检波点少,灵敏度低,稳定性差。
十、锡石矿石:是常见的锡矿物,硬度高,比重大。复四方双锥晶系,常呈双锥状、双锥柱状。颜由无至黑,透明至不透明。富铁锡石可具电磁性。使用效果:检波点不多,灵敏度高,稳定性好。
十一、斑铜矿石:是一种铜铁的硫化物矿物。多呈致密块状集合体。新鲜断面呈古铜,表面易氧化呈蓝紫斑状的锖。在地表易风化成孔雀石和蓝铜矿。使用效果:检波点少,灵敏度低,稳定性差。
十二、磁铁矿石:氧化物类铁矿石,属等轴晶系。晶体呈八面体和菱形十二面体,集合体呈粒状或块状。半金属光泽,颜铁黑。使用效果:检波点少,灵敏度很低,稳定性一般。
十三、金属硅:旧称“矽”,又称结晶硅或工业硅,其主要用途是做为非铁基合金的添加剂。使用效果:检波点多,灵敏度高,稳定性好。
几种在资料中介绍有检波功能的矿石,而本人在测试中无法检波。也许您手中有同样名称的矿石却可以使用,这并不奇怪。
一、金红石:金红石就是较纯的二氧化钛,在地壳中储量较少。四方晶系,常具完好的四方柱状或针状晶形。颜暗红、褐红,黄或桔黄,富铁者呈黑。透明至不透明。性脆。使用效果:缘体,不能检波。
二、褐铁矿:褐铁矿呈多种调的褐,一般为钟乳壮、葡萄状,致密的或梳松的块状甚至土状。也有像黄铁矿那样的晶体形状(称为假像)。使用效果:缘体,不能检波。
三、闪锌矿:锌的硫化物矿物。纯闪锌矿近似于无、通常因含其它物质而呈浅黄、红褐、棕甚至黑。透明至不透明,晶体形态呈四面体或菱形十二面体,通常成粒状集合体产出。使用效果:缘体,不能检波。
四、菱铁矿:菱铁矿一般为晶体颗粒状或致密块状、球状或凝胶状。颜一般为黄白或灰白,风化后变成褐或褐黑。使用效果:正反向电阻很小,不能检波。
五、辉锑矿:辉锑矿是锑的硫化物,属正交斜方晶系,晶体常见呈尖顶的长柱型。铅灰、金属光泽不透明。使用效果:缘体,不能检波。
六、钼铅矿:钼铅矿是一种铅钼酸盐矿物,具有松脂光泽或金刚光泽,颜为黄到橙红或褐。四方晶系四方双锥晶类,板状、薄板状晶体,少数锥状、柱状,单形常见,集合体粒状。使用效果:缘体,不能检波。
七、铬铁矿:铬铁矿是铬和铁的氧化物矿物,相当坚硬,黑半金属光泽。使用效果:缘体,不能检波。
八、白铅矿:白铅矿是方铅矿遇到含碳酸盐的水后发生化学反应而形成的。像这样一种矿经化学作用成为另一种矿,称为次生矿物。晶体为透明至半透明。以白、无为主,亦有灰、黄、红棕或蓝绿。使用效果:缘体,不能检波。
九、毒砂:铁、砷的硫化物,又称砷黄铁矿。中国从毒砂(旧称白砒石)中制取砒霜,历史悠久。单斜或三斜晶系,晶体呈柱状,集合体成粒状或致密块状。锡白至钢灰,金属光译。敲击时发出蒜臭味。使用效果:良导体,不能检波。
十、锑:银白有光泽硬而脆的金属。有磷片状晶体结构。使用效果:良导体,不能检波。
十一、铋:铋在自然界以游离金属和矿物的形式存在。矿物有硫化物辉铋矿、氧化物铋华等。铋为银白至粉红金属,质脆易粉碎。在2003年,发现了铋有其微量放射性。使用效果:良导体,不能检波。
十一、自然铜:铜红,表面常出现棕黑氧化被膜。密度大延伸性强,常与赤铁轨、孔雀石、蓝铜矿伴生。使用效果:良导体,不能检波。
摘要:从铜含量为0.77%~1.32%之间的铜渣中回收金属,回收金属主要为铜;然而一些渣也含有0.4%左右的钼,有可能将熔融的铜渣变为一种新原料来开发新工艺,得到新产品。从这点来讲,使用焙烧-浸出工艺处理铜渣是为了回收渣中的钼,用氧化焙烧法将氧化铁转化为不溶性赤铁矿,而铜和钼转化为可溶态溶于酸溶液。因为钼与氧化铁类晶石相结合,在浸出过程中它的还原会受四氧化三铁成分影响,使用硫酸进行渣浸出,钼的回收率超过80%。因此,使用两段工艺,即氧化焙烧后酸浸对钼进行回收,得到的结果表明这种方法的可行性。
0前 言
当前,受经济、环境及金属高消费问题的影响,迫使人们开发更经济有效、从二次资源中回收有价金属的方法得到了推广。智利每年要产出含铜量为0.77%~1.32%、含钼0.4%及大量的铁和二氧化硅的铜渣超过350万t,因而,在循环利用金属萃取工艺上,铜渣就显示出了它的经济潜力[1]。
从铜渣中萃取金属有许多湿法冶金方面的建议,这包括直接从硫酸或氯化铁中浸出,也有将渣与硫酸、硫酸铵、硫酸铁焙烧或在还原的条件下酸浸这方面的报道。然而,的报道都是涉及铜和钴或镍还原方面,关于通过湿法冶金工艺从铜渣中回收钼的数据少有报道[4-8]。
因此,有人提议焙烧低品位的钼精矿与石灰或碳酸钠,将钼转化为钼酸盐,也有人研究将废催化剂与碳酸钠焙烧,还原可溶性钼酸盐[9-12]。因此,生产钼有效的方法是将钼精矿焙烧得到三氧化钼,随后对三氧化钼进行还原得到金属钼[12]。所以,本工作的重点是研究氧化物经过焙烧后酸浸,从铜渣中回收钼的可行性。
1从理论上讲
铜渣中的矿物学成分及所呈现的相取决于加
工矿物的类型、炉子的类型及冷却方法等几方面的因素。缓冷导致渣的组分有相当数量的结晶,形成大量的不同矿物相,冷却的速度越慢,矿物相增长越大;缓冷速度快,有可能产生非晶体渣,因而金属在渣中分布越均匀[14]。当铜渣是晶体时,主相通常是伴有硅酸盐的硅酸铁盐及金属氧化物,铜以氧化物或硫化物或两者的混合体存在。
在铜的回收过程中,比较典型的铜渣分析显示,钼分散在整个氧化铁相中,钼高度氧化,并与四氧化三铁的化学结构相结合,如图1所示。
在冶炼前,由于钼从硫化铜矿中浮选的效率低,所以钼出现在渣中。同时,也有报道说钼与属于2FeO·MoO2-Fe3O4系列的尖晶石结合,浸出率低[15]。
在熔融状态下,除了带入液体的一些铜及硫化铜以外,从化学性质上讲,渣是均质的,在急速冷却条件下,它仍保持均质状态。当渣缓慢冷却时,它不会过氧化,且至少可能形成两种固体相:硅酸亚铁和部分被氧化成的四氧化三铁,铜仍为硫化物;这种条件下通常通过浮选回收铜。然而,根据以下反应,铜、硫化铜及氧化铜在高度氧化焙烧条件下,温度在600~800 ℃时,能被转化。
Cu+1/2O2=CuO (1)
Cu2S+2O2=2CuO+SO2 (2)
Cu2O+2/3O2=2CuO (3)
在这些条件下,当温度达到800~1 100 ℃之间时,硅酸铁在有氧条件下分解,具体如下:
2FeO·SiO2+1/2O2=Fe2O3+SiO2 (4)
2FeO·SiO2+1/3O2=2/3Fe2O3+SiO2 (5)
根据以下反应,钼从它与氧化铁的尖晶石的组合物中分离出
2FeO·MoO2·Fe2O3+O2= 2Fe2O3+MoO3 (6)
图2实验室实验的结构图
因而,氧化焙烧会使铁硅酸盐分解,形成不溶于酸溶液的四氧化三铁和二氧化硅,这样在室温条件下,经过焙烧工序处理的产品就很容易通过酸浸进行处理,钼的还原效果就好,铜仍留在渣里面。
2实 验
缓冷和速冷却的系列冶炼铜渣的化学特性,如表1所示。
表1系列冶炼铜渣的化学性质* %
在一个典型的试验中,渣在实验室的管式Lindberg-Blue 炉0.5 cm厚的固定床上进行焙烧,条件如下:温度700 ℃,所用气体中混有90%的空气及10%的二氧化硫,物料粒度400目为100%,所得到的煅烧砂使用标准浸出测试法用如下条件在实验室中浸出:温度为18~20 ℃,硫酸为50 g/L,液固比为10∶1,物料粒度200目为100%,如图2所示浸出2 h。进行浸出测试以确定不经过煅烧步骤渣的溶解性,条件如下:温度为20 ℃,硫酸150 g/L,液固比为10∶1。
空气与二氧化硫混合是为了评估使用冶炼烟气促成四氧化三铁反应的可行性,正如以前报告中提到的计划那样,增加铜渣的商用价值[17]。
3结果与讨论
图3显示的是使用扫描电镜技术扫描到的缓冷渣的特性,微探针分析显示的是沉积的氧化物及硅酸盐的络合物,钼在这里形成了一个Fe-Mo-O的分离相,如1#、2#和4#相所示,络合物中铁的含量在52.03%~63.57%之间,钼含量在1.25%~6.35%之间。同时,这些相中二氧化硅的含量低,表明铁能在磁铁矿中呈现如FeO·MoO2-Fe3O4样的尖晶石结构,3#相显示的是玻璃状的铁硅酸盐型含钼量低的二氧化硅富集溶液。
图4是渣的扫描电镜分析,如图4a所示,可观察到铁分布在整个玻璃状的铁硅酸盐相中;图4b显示的是钼散布在渣中并与铁的分布路径紧邻的硅酸盐相。
铁的高萃取率表明铁硅酸盐的主要部分分解,这导致酸的消耗及溶液中胶态氧化硅增加,也增加了后期钼分离的难度。每吨渣所消耗的硫酸量在800~1 000 kg,溶液中的二氧化硅的富集量在10~15 g/L。
如图5所示,含不同成份磁铁矿的渣使用焙烧-浸出工艺,可观察到渣随着钼还原量的增加,四氧化三铁含量减少。
由于钼与氧化铁尖晶石结合在一起,酸浸不易分解,需要氧化成为钼的易溶态或氧化钼,这样才能在浸出过程中溶解,铁被氧化成为氧化铁,以便对钼进行选择性浸出。
在氧化过程中,氧化铁尖晶石转化为氧化铁,钼从铁尖晶石相中分离出,同时也被氧化成为它的高氧化态并反应生成热稳定的合成物,该合成物可以从氧化铁及硅酸盐合成物中不受限进行选择性浸出。
这里应当注意渣的熔点,这些合成物可以互溶,且由于氧化亚铁和四氧化三铁决定了铜渣的氧化态,可以得出钼的还原态为Mo4+。
因为渣中钼的浓度比较低,与以高的浓度并以Fe2+及Fe3+氧化物形态存在的氧化铁相比,很难经过分析实二氧化钼的存在。然而,有一点清楚,渣与四氧化三铁尖晶石晶化,形成二氧化钼固溶体,钼的浸出率低。
4结 论
铁和钼分布在整个玻璃状硅酸盐相,且在渣中钼的分布与铁的分布路径紧紧相邻,因此,钼主要与氧化铁尖晶石相结合。
由于氧化反应破坏了渣的结构,产生赤铁矿及方晶石,氧化铁及二氧化硅成为渣的主要成份,二氧化硅相中也应当有次要的氧化物成份出现,因而,在被氧化的渣中,硅酸盐及氧化铁就成为预期的两个主要的基本相。
人们普遍认为,渣氧化的结果是钼和铁被氧化成高氧化态,因而使用酸浸工艺就可以将钼从渣的氧化微粒中选择性浸出。
渣中的四氧化三铁显示,钼是嵌入在尖晶石固体相中,说明它在酸溶液中的溶解度低。然而,渣的溶解度测试结果显示,当渣中的四氧化三铁含量减少时,钼的萃取率提高,这对渣的焙烧转化同样有效。
宿州附近回收废钼价格查询
钼元素(mù)为人体及动植物的微量元素。为银白金属,硬而坚韧。人体各种组织都含钼,在人体内总量为9mg,肝、肾中含量高。成年人每天一般需要0.15~0.3mg的钼。钼是维持人体健康的微量元素之一,更是眼睛虹膜的重要营养成分。虹膜可调节瞳孔大小,视物清楚。瞳孔放大与缩小的灵敏度与虹膜的健全有密切关系。钼对眼睛的营养机制是明钼菊“明目”的机制之一。
钼元素缺乏导致的不良影响有那些?HI98192使体内的能量代谢过程发生障碍,致使心肌缺氧而出现灶性坏死。导致缺铁性贫血。
影响胰岛素调节功能,造成眼球晶状体房水渗透压上升,屈光度增加而导致近视。
生长发育迟缓甚至死亡,神经异常,智力发育迟缓。
导致龋齿、肾结石、克山病、大骨节病、食道癌等疾病。增加了SO2毒害的敏感性。
钼食物来源膳食中摄人的钼主要来源于动物内脏、肉类、全谷类、麦胚、蛋类、叶类蔬菜和酵母。具体来说,钼含量较高的食物有:菊花、大豆、扁豆、萝卜缨、糙米、牛肉、蘑菇、葡萄和蔬菜等。
钼对健康的有益影响
钼是人体所需微量元素钼是人体所的微量元素之一,对人体健康有很大影响。钼对健康的影响主要有:
钼是形成尿酸不可缺少的微量元素。
钼是多种酶的重要构成要素,参与人体内铁的利用,可以预防贫血,促进发育,并能帮助碳水化合物和脂肪的代谢。
维持心肌能量代谢,预防克山病。
维持动脉的弹性,预防心血管疾病。
维护人体免疫功能。
调节甲状腺。
龋齿、肾结石和癌症等。
钼是组成眼睛虹膜的重要成分。钼为银白金属,硬而坚韧。密度10.2克/厘米3。熔点2610℃。沸点5560℃。化合价+2、+4和+6,稳定价为+6。电离能7.099电子伏特。在常温下不受空气的侵蚀。跟盐酸或氢氟酸不起反应。
人体各种组织都含钼,在人体内总量为9mg,肝、肾中含量高。成年人每天一般需要0.15~0.3mg的钼。由于钼在食物中比较广泛地存在,HI98103-02例如明钼菊花、小麦、豆类、牛奶、蛋类、猪肉和蜂蜜等食物中含有钼,再加上人体对钼的需要量低,因此一般不会缺钼。有些人缺钼,除了要考虑环境或饮食的因素外,还要注意人体本身对钼的吸收和利用。例如,因胃肠功氰尿酸能紊乱而造成缺钼的患者,应在补充含钼饮食的同时,加强对原发疾病及其病因的诊治。对缺钼的患者来说,目前还没有真正的钼类可应用。
钼对健康的有益影响
钼是人体所需微量元素钼是人体所的微量元素之一,对人体健康有很大影响。钼对健康的影响主要有:
钼是形成尿酸不可缺少的微量元素。
钼是多种酶的重要构成要素,参与人体内铁的利用,可以预防贫血,促进发育,并能帮助碳水化合物和脂肪的代谢。
维持心肌能量代谢,预防克山病。
维持动脉的弹性,预防心血管疾病。
维护人体免疫功能。
调节甲状腺。
龋齿、肾结石和癌症等。
钼是组成眼睛虹膜的重要成分。
钼对健康的不利影响
钼缺乏
钼缺乏导致的不良影响主要有以下几个方面:
使体内的能量代谢过程发生障碍,致使心肌缺氧而出现灶性坏死。
导致缺铁性贫血。
影响胰岛素调节功能,造成眼球晶状体房水渗透压上升,屈光度增加而导致近视。
生长发育迟缓甚至死亡,神经异常,智力发育迟缓。
导致龋齿、肾结石、克山病、大骨节病、食道癌等疾病。
增加了SO2毒害的敏感性。钼为银白金属,硬而坚韧。密度10.2克/厘米3。熔点2610℃。沸点5560℃。化合价+2、+4和+6,稳定价为+6。电钼离能7.099电子伏特。在常温下不受空气的侵蚀。跟盐酸或氢氟酸不起反应。人体各种组织镁硬度都含钼,在人体内总量为9mg,肝、肾中含量高。成年人每天一般需要0.15~0.3mg的钼。由于钼在食物中比较广泛地存在,HI981309例如明钼菊花、小麦、豆类、牛奶、蛋类、猪肉和蜂蜜等食物中含有钼,再加上人体对钼的需要量低,因此一般不会缺钼。有些人缺钼,除了要考虑环境或饮食的因素外,还要注意人体本身对钼的吸收和利用。例如,因胃肠功能紊乱而造成缺钼的患者,应在补充含钼饮食的同时,加强对原发疾病及其病因的诊治。对缺钼的患者来说,目前还没有真正的钼类可应用。钼对健康的有益影响钼是人体所需微量元素钼是人体所的微量元素之一,对人体健康有很大影响。钼对健康的影响主要有:钼是形成尿酸不可缺少的微量元素。钼是多种酶的重要构成要素,参与人体内铁的利用,可以预防贫血,促进发育,并能帮助碳水化合物和脂肪的代谢。维持心肌能量代谢,预防克山病。维持动脉的弹性,预防心血管疾病。维护人体免疫功能。调节甲状腺。龋齿、肾结石和癌症等。钼是组成眼睛虹膜的重要成分。钼对健康的不利影响钼缺乏钼缺乏导致的不良影响主要有以下几个方面:使体内的能量代谢过程发生障碍,致使心肌缺氧而出现灶性坏死。导致缺铁性贫血。影响胰岛素调节功能,造成眼球晶状体房水渗透压上升,屈光度增加而导致近视。生长发育迟缓甚至死亡,神经异常,智力发育迟缓。导致龋齿、肾结石、克山病、大骨节病、食道癌等疾病。增加了SO2毒害的敏感性。
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁钼箔片后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂。钼是植物所的微量元素之一,在农业上用作微量元素化肥。 纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温钼坩埚烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。 钼在其它合金领域及化工领域的应用也不断扩大。例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域。由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。 钼在薄膜太阳能及其他镀膜行业中,作为不同膜面的衬底也被广泛的应用。
钼与钨的性质相近,其沸点和导电性能突出,线热膨胀系数小,较钨易于加工。
金属钼的热导率[135瓦/(米·开)]与比热[0.276千焦/(千克·开)]呈佳搭配,使它成为抗热震和热疲劳的天然选择。它的熔点为2620℃,次于钨、钽,但密度却较之低得多,因此其比强度(强度/密度)大于钨、钽等金属,在对重量要求关键的应用中,更为有效。钼在1200℃仍有高的强度。
钼的主要缺点是抗高温氧化性能差(高于600℃迅速氧化)和室温延性不佳。为扬长避短,对高温氧化问题多采用涂层(如涂MoSi2、镀镍、镀铬等)办法控制;对塑性过差即通常说的低温脆化的欠缺,则通过合金强化和加人碳化物实现强化等措施解决。
钨(W)、铼(Re)、钽(Ta)、钛(Ti)和锆(Zr)等是常见的固溶强化元素。钨是钼的主要固溶强化元素,铼可把延脆转变温度降到—200℃。由它们形成的工业钼合金参见表。其中由镧构成的钼镧合金显示出为突出的抗蠕变及高温变形能力,其在高温下的这一特性表现得尤为明显。