宜春本地废钼回收哪个好
钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁 钼箔片
后再用于炼钢.低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右.不锈钢中加入钼,能改善钢的耐腐蚀性.在铸铁中加入钼,能提高铁的强度和耐磨性能.含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件.金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用.氧化钼和钼酸盐是化学和石油工业中的优良催化剂.二硫化钼是一种重要的润滑剂,用于航天和机械工业部门.除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的C1化学催化剂.钼是植物所的微量元素之一,在农业上用作微量元素化肥.纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温 钼坩埚
烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造.合金钢中加钼可以提高弹性限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存.动物和鱼类与植物一样,同样需要钼.钼在其它合金领域及化工领域的应用也不断扩大.例如,二硫化钼润滑剂广泛用于各类机械的润滑,钼金属逐步应用于核电、新能源等领域.由于钼的重要性,各国政府视其为战略性金属,钼在二十世纪初被大量应用于制造装备,现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件.钼在薄膜太阳能及其他镀膜行业中,作为不同膜面的衬底也被广泛的应用.
在化学元素周期表中,钼元素不怎么引人注“钼”,它不像铝、铁那样常见,不如铂、金贵重,更不似氧、氢那般构成了生命的主体。然而,钼元素与人类的关系其实密切,而关于钼元素的方方面面,有一些趣事你可能并不了解。
钼曾被误认为铅
虽然早在14世纪,人们就懂得利用含钼的钢铁来锻造军刀,但那个时候,人们还没有意识到钼元素的存在。原因在于,钼元素在地壳中的含量约为百万分之一,分布也比较分散,属于比较稀有的金属。而且,钼元素往往不是以单质的形式存在,主要与硫结合成化合物,形成辉钼矿,或者偶尔与铅、铜组合,生成铅钼矿和铜钼矿。
16世纪之前,当人们发现辉钼矿的时候,看到它为铅灰,具有金属的光泽,而且辉钼矿多以细微柔软的鳞片状产出,具有挠性(金属或矿物受力发生变形,在作用力失去之后不能恢复原状的性质称为挠性,与“弹性”相对),摸起来还有种油腻的感觉。这和石墨的性质十分相似,所以辉钼矿被误以为是石墨。后来,人们在寻找铅矿石的时候,发现辉钼矿的外观类似于方铅矿,于是,又把钼误认为是铅。所以,人们便用古希腊语中的“molybdos”(意思是“铅”)命名辉钼矿。
直到1778年,德国化学家卡尔·舍勒才首次实,钼辉矿并不是方铅矿,也不是石墨,而是一种新的矿物,含有新的元素。但是,舍勒没有办法将这种新的元素从矿石中分离出来,所以他没能成为个发现钼元素的科学家。有趣的是,舍勒被后世称为“倒霉蛋科学家”,他的坏运气就是从错失钼元素开始的,后来舍勒又从空气可以助燃的实验现象中差点发现了氧气,但却因为迷信燃素说而将发现氧气的机会留给了安托万·拉瓦锡。
在舍勒之后,其他科学家也试图从辉钼矿中提取出新元素,他们让辉钼矿发生氧化反应,然后将粉末放入水中,形成钼酸,但仍然无法从中析出钼金属。终于,在1781年,瑞典化学家彼得·海基尔姆幸运地摘取了科学果实。他将碳粉、亚麻籽油和钼酸混在一起,搅拌成糊状,然后用封闭的坩埚对这一团“浆糊”加热。终于,海基尔姆用这样的“碳还原法”将新的金属从辉钼矿中分离出来,他随即将该金属命名为“钼”。至此,人们才开始了解到钼元素的真面目。
战争使钼名扬天下
1781年,人们开始懂得如何得到金属钼,但此后的100多年里,全世界金属钼的总产量也不超过10吨。由于钼元素易于氧化,且冶炼和加工水平有限,人们似乎还不知道如何将这种金属大规模地应用到工业生产中来。
不过,钼元素适合重工业的优点还是有目共睹的,它硬而坚韧、耐腐蚀、耐高温,熔点仅次于钨、钽,它注定会成为人类重要的工业原料。1891年,法国施耐德公司率先将钼作为合金元素生产出了含钼的钢板,发现其性能,而且钼的密度仅是钨的一半,钼便逐渐取代钨成为炼钢的合金元素。到了20世纪,人类爆发了两场规模空前的世界大战,统计资料显示,在次世界大战中,钼的年产量从数吨瞬间飙升到了100吨,而到了二战时期,又增长至1万吨。为何战争促进了钼的生产?这是因为它太有用了。
我们知道,“陆战”——坦克就是在一战中发明的。初,英国人为了增强坦克的防御力,给坦克安装了75毫米厚的锰钢板,但这种笨重的坦克在战争中表现得并不怎么样。后来,英国人通过试验,将锰钢板换成钼钢板,在不削弱防御力的前提下使得坦克的厚度减了50毫米,结果,更加机动灵活的坦克才得以大显神威。
同样,德国的攻坚——“大贝尔莎”巨炮,也是用钼钢做成的。一战前期,应德国总参谋部的要求,德国工业巨头克虏伯公司研制出了史无前例的重炮,并以古斯塔夫·克虏伯的妻子贝尔莎命名。“大贝尔莎”的口径为420毫米,炮身重43吨,需要200位德国军人花6个星期才能组装完毕。更吓人的是,“大贝尔莎”的重820千克,射程15千米,再坚固的工事也经不住它来这么一发。克虏伯之所以能够研制出威力如此惊人的巨炮,其秘诀就在于使用了材质的钼钢来制作炮身,因为当“大贝尔莎”发射时,只有耐高温的钼能够抵御产生的热量,以免熔化炮身。
到了第二次世界大战,钼元素同样发挥着重要的作用。当时,战场上的坦克莫过于德国的式坦克,其类型包含Ⅰ型和Ⅱ型两种。从1942年服役至1945年德国投降,式坦克一直活跃于战场线,它所向披靡,抵挡。不过,在库尔斯克会战中,苏联人俘获Ⅱ型坦克后对其进行了测试,发现Ⅱ型坦克并不像传说中的那样坚不可摧,虽然它装甲很厚,但是防御效果相对于Ⅰ型并未有较大提升。之所以出现这种状况,其实是由于德军所占领的挪威克纳本钼矿在1943年被盟军轰炸,从而使德军失去了钼的来源。战争初期,德军的Ⅰ型坦克都采用了钼钢,这种钼钢耐腐蚀,在高温条件下仍然具有较高的强度,而Ⅱ型坦克的厚装甲中已经无钼可用,所以影响了德军装甲部队的战斗力。
钼是多才多艺的金属
两次世界大战使人们意识到钼对于军事的重要作用,战后,钼的年产量由10万吨上升到如今的20多万吨。钼在“战争金属”美誉的同时,其应用范围也越来越广,是在核能、医疗等高科技领域发挥着越来越重要的作用。
2018年,俄罗斯的莫斯科工程物理学院的科学家们发表了一项关于核燃料保护套的研究,他们使用钼合金代替现有的锆合金来用作核燃料保护外壳,可以提高核电站的性。
在现有的核电站中,铀燃料棒是安装在锆合金保护外壳内的。锆合金具有很高的耐腐蚀性,而且锆几乎不会和中子反应,所以是好的核燃料棒保护外壳。但是,在端情况下,比如由于地震和海啸导致应急冷却系统出现故障时,核反应堆内冷却水的水平面会一直下降,使铀燃料棒处于裸露状态,那么冷却不足会使高温的锆合金外壳与高温水蒸气产生氢化作用(即锆水反应),这会导致反应炉熔毁以及氢气爆炸——2011年的日本福岛核电站事故就是这样发生的。如果想要避免类似的事故,办法之一就是寻找一种比锆合金更优秀的核燃料棒保护外壳,而在众多金属材料中,只有钼同时满足比锆更耐腐蚀、更耐热、有更高的导热性以及更小的中子截面积(意味着不与中子反应)的条件,因而特制的钼合金很可能会在未来成为核电站防护装置的主要材料。
钼元素还被应用于医疗实践。比如,锝99是应用广泛的放射性造影剂,不过,锝99只能由一种方式制备,那就是钼99衰变。钼99是钼的一种放射性同位素,它的半衰期为2.75天,半衰期过后,钼99衰变为锝99。钼99的半衰期理想,这个时间不但了钼原子在原料地到医疗场所的运输过程具有的稳定性,而且了锝99的放射性可以在短时间内。如果半衰期过短,在运输过程中,钼原子可能产生放射性辐射的危险;如果半衰期过长,将影响医疗诊断的效率。在核医学中,80%的医疗到了锝99,而在美国,每天使用锝99的诊断就达 55000多起,所以,钼的重要性不言而喻。
生命对钼很敏感
生物老师常常会讲一个故事:某一年,新西兰的一个牧场遭遇了干旱,大量牧草枯萎而死,但有一条矿工经常踩踏的小路边上生长着茂密的绿草。这是为什么呢?原来这里的矿场是钼矿,矿工们每天工作,身上难免会沾上矿渣,当他们走路时不经意间将矿渣撒落在小路上,就如同上天赐予的“大补丸”,给路边的小草提供了的养料。另外,科学已经明,对农作物施加钼肥,可以增强农作物的抗病、抗旱和抗旱能力,提高产量。比如,根据科学家的统计,每亩农田施加钼肥20克,可使小麦增产35%,而大豆则可增产47%,蚕豆增产8%,绿豆增产32.8%,番茄增产75%。
钼不仅是植物生长和发育中的微量元素,也是植物发挥固氮功能的重要元素。氮是生命之源,有了氮,植物才变得有营养。然而,植物并不能直接吸收空气中的氮气,它们需要在固氮菌的帮助下,通过化学反应将氮元素吸收并存储起来。固氮菌为植物固氮的过程很复杂,需要一种催化剂,名为固氮酶,金属钼正是固氮酶的重要成分。每年,植物固氮总量约1亿吨,远超过人工固氮量,这都是钼元素的功劳。
不仅植物需要钼,我们人体内也需要钼,只不过需量少。成年人体内大约只有9毫克钼,而且它们分散在身体的各个部分。虽然如此,我们对于钼还是敏感的。比如,钼与我们头发的颜有关,因为钼元素会使头发偏红褐。又比如,我们的情绪也容易受钼的影响,有它,我们会精力充沛,神气十足,缺少或无它,我们会感到疲惫不堪,浑身乏力。钼为什么有这么大的本事呢?原因在于,钼是两种在新陈代谢中起重要作用的酶的组成成分,一是黄嘌呤氧化酶,一是亚硫酸盐氧化酶。这两种酶有钼存在时才具有活力,没有钼,就会失去活力,起不了催化作用。
由于钼在食物中比较广泛地存在着,小麦、豆类、猪肉、牛奶、蜂蜜都含有钼,人对于钼的需要量也不高,所以我们一般不会缺钼。如果身体摄入多余的钼,反而会引起金属中毒。
由此看来,钼这种罕见的元素,与我们的日常生活还真息息相关呢。
废钼回收的技术流程与关键环节
废钼回收的技术流程通常包括预处理、化学提纯和熔炼三个核心环节。预处理阶段通过磁选、破碎和筛分去除杂质;化学提纯采用酸浸或碱浸法溶解钼化合物,再通过沉淀或电解获得纯钼粉;最后经高温熔炼制成钼锭或钼合金。其中,催化剂废料的回收技术要求较高,需采用焙烧-氨浸工艺提取钼酸铵。技术难点在于杂质控制(如镍、铁)和回收率提升,部分企业已引入自动化分选系统和绿色浸出技术以优化效率。
1.1 钼元素:熔点高、耐高温、导电性及导热性强,性能优势明显
钼(Molybdenum,化学符号Mo)是1778 年由瑞典化学家C.W Scheele 首先从辉钼矿(MoS2)中提炼出来的一种金属元素。位于元素周期表第五周期第6族(铬分族),为过渡金属元素。
钼金属具银白金属光泽,具备高强度、高熔点、高硬度、导热导电性能好、耐研磨、热膨胀系数小、抗腐蚀性能强等优良特性,不可替代性强。
2019年中国自然发布《自然关于推进矿产资源管理若干事项的意见》将钼列入14种重要战略性矿产。
1.2 钼元素性能优势明显,应用领域广泛,终端产品以钢材为主
作为重要战略稀有有金属,钼由于其优秀的理化特性,在钢铁合金添加剂、钼基合金和化工产品等方面有重要应用,下游涉及汽车、能源、航空航天、军工、化工等中高端领域。
钼作为合金添加剂(占比约79%):合金钢(建筑用钢、汽车等),不锈钢(海洋装备、航空航天等),高速钢和工具钢,铸铁和轧辊。
钼化工制品(占比约13%):润滑剂、催化剂、颜料、微量化肥等。
钼金属及钼基合金(占比约8%):钼丝等,用于灯泡制造、电子管和集成电路等电子工业、模具制造、高温原件、航空航天及核工业等高精尖领域。
2 钼产业链:具备多种中间产品,钼铁为主要消费形式
钼产业链主要分为上游的矿石采选和钼精矿的生产,中游的焙烧和冶炼,以及下游的精深加工。
产品形态主要分为三种:钼炉料产品(钼铁、钼精矿、氧化钼等);钼金属产品(钼粉等);钼化工产品(钼酸铵等)。
3.1 钼供给情况:集中度高的战略金属
矿床角度:钼矿床类型主要有斑岩型、矽卡岩型和石英脉型三种,其中以斑岩型钼矿及铜钼矿为主。其中,斑岩型钼矿床储量大,矿石平均含Mo约0.12%,个别达0.3%;斑岩型铜钼矿床储量次之,矿石平均含Mo约0.01%。
主要钼矿床的分布与斑岩型铜矿床的分布相似,主要集中在环太平洋大陆边缘和岛弧带、新特提斯-喜马拉雅构造-岩浆带和古亚洲洋边缘,这些成矿带大都受特定时期的洋壳俯冲作用影响,产出大量斑岩型钼(铜)矿床。
矿物角度:截至1987年自然界中共发现28种含钼矿物,其中分布广且具工业意义的是辉钼矿(MoS2),其他常见且具工业意义的含钼矿物有钼华(MoO3)、钼钨钙矿(Ca(MoW)O4)、(彩)钼铅矿(PbMoO4)等
3.2 钼储量情况:集中度高的战略金属
从资源属性上看,钼矿资源并不短缺,但时空分布具有较强的专属性。据USGS数据统计,2023年钼储量为1500万吨。
受成矿带分布影响,钼资源储量呈现强的集中性。据USGS数据统计,钼矿资源储量主要集中分布在11个国家,2023年储量前四的国家分别为中国(580万吨),美国(350万吨),秘鲁(150万吨)和智利(140万吨),CR4达81.3%。
中国钼资源也具有很高的聚敛效应,探采比方面呈现显著下降趋势。据《2020—2022年全国矿产资源储量统计表》,中国钼资源集中分布在河南(126万吨),内蒙古(109万吨),西藏(103万吨),黑龙江(66万吨)和吉林(58万吨)等地,CR5达78.4%。另据《中国自然资源统计年鉴》,伴随钼资源开发利用的规模化和集约化,探矿权从2013年的568个下降到2022年的111个,下降80.5%;采矿权从2013年的175个下降到了2022年的79个,下降54.9%。
矿山分布上看,大型矿山分布呈现“三足鼎立”态势。主要大型钼矿床34个,其中:
北美洲的美国、墨西哥和巴拿马-12个
南美洲的智利、秘鲁和阿根廷-11个
亚洲、欧洲和大洋洲—11个
大致成“三分天下”之势,与钼矿资源分布情况基本吻合。同时,国内钼矿以原生钼为主(78%),国外钼资源以伴生钼为主(60%+),因此国外钼资源开发容易受矿山主矿种开采的影响。
超大型钼矿床储量区间100万-200万吨,前十大钼矿中智利Spence铜钼矿位居,钼金属量为276万吨。
从我国钼资源看,十大钼矿中,黑龙江岔路口、安徽金寨沙坪沟、大黑山钼矿分列二、三、九名,钼矿资源储量达247/234/109万吨。河南三道庄钼矿受2021年品位下滑影响,储量下降,目前已不在十大矿山之列。
3.3 及中国钼矿资源产量情况
2020-2021年钼产量下降,2021-2023年间总体平稳。2020-2021年受矿山品位下滑等因素影响,钼产量下滑14%至25.5万吨;2021-2023年钼产量稳定在25-26万吨区间。
中国作为钼矿产量大国,在钼供应体系中起到“定海神针”的作用。
从企业端看,钼生产企业也呈现高度集中性。据各公司年报统计,2023年前10大钼矿生产企业共实现钼矿生产17.02万吨,合计占比达65.5%。
其中,美国自由港麦克莫兰铜金公司作为大钼供应商,2023年实现钼产量3.71万吨,占产量14.3%。金钼股份,墨西哥集团(主体下属南方铜业)2023年均实现2万吨以上钼矿生产。
智利国家铜业受矿端品位下滑等影响,近年来整体产量呈现下滑趋势,2023年实现钼矿产量1.73万吨。
紫金矿业钼产量整体呈现上升趋势,叠加远期大项目落地,有望实现产量端跨越式增长。其中,紫金矿业近三年排产量提升,至2023年已实现0.81万吨钼矿生产。
4.1 及中国钼资源需求情况
钼的终端消费结构中合金钢占比将近一半(41%),其次是不锈钢(22%)和化工(13%),除此之外还包括工具钢、金属铸造、钼金属、镍合金等应用。
化工/石化、石油/天然气和机械工程是主要的钼需求来源,比例分别为16%、15%和13%。其他领域如交通、加工业、电力、建筑也有一定需求。
2022年对钼的总需求量为28.64万吨,同比上升3.34%。钼的前五大消费国/地区为中国、欧洲、美国、日本、独联体。中国长期占据钼大消费国,2022年钼消费量为12.20万吨,占的42.58%。中国钼消费量在近几年持续增长,但增速有所放缓。
4.2 钼资源供需平衡情况
中国是钼供给的主力,2023年产量占的42%。我们预计2023-2026年间中国增产1万吨,海外增产幅度较小,为0.27万吨,钼供给总计增加1.27万吨,增量较少。
中国也是钼的主要消费国,2023年需求占的44%。我们预计2023-2026年间中国钼需求增长1.96万吨,海外需求增长1.17万吨,合计增长3.13万吨,需求增幅远高于供给增幅。
综上,预计钼供需缺口持续拉大,2026年供需缺口预计将达4.43万吨。
5 中国钼进出口情况
我国为传统钼净出口国,2021-2023年维持紧平衡状态。2021年后我国每年维持1-3万吨净出口状态,2024年为净状态。
进出口产品结构有较大差异,也反馈出我国产业链结构特点。从海关总署披露数据看,2021-2024年间我国以原料为主,2024年钼精矿(焙烧)及其他钼精矿占比达到77%;出口则呈现多元化趋势,但主要以炉料产品为主,2024年钼精矿、其他钼制品、钼铁、钼的氧化物分别占比42%、21%、18%、8%。
精矿端,我们对海关总署钼精矿数据进行国别/地区拆分,可以看到2020年之前我国主要依赖智利,其数量可达到总量近50%。但受到矿山品位下滑+产量降低等因素影响,同时考虑到供应国稳定性等因素,2021年起我国积调整采购策略。至2023年,智利+秘鲁为我国钼精矿主要国,单年量各约1-1.5万吨。
精矿出口端,韩国为我国精矿出口大国,单年采购量1-1.5万吨;泰国近两年采购量提升,2023年单年采购量已提升至6000吨。
钼铁出口端,印尼为我国钼铁出口大国,且集中度较高,2023年我国对印尼实现钼铁出口6670吨,占我国钼铁出口总量的79%。
钼,是元素周期表上序号为42的一种过渡金属元素,它的化学符号是Mo。钼金属呈银白,硬而坚韧。它在常温下不受空气的侵蚀,跟盐酸或氢氟酸不起反应。
千呼万唤始出来
自然界中,钼主要以矿物辉钼矿(MoS2)形式存在。天然辉钼矿是一种软的黑矿物,尽管辉钼矿在古代就得到了应用,但辉钼矿和铅、方铅矿及石墨都很相似,不易区分。“molybdos”这个词在希腊文里就是铅的意思。18世纪末以前,欧洲市场上两者都以molybadenite(铅的古希腊名)名义出售。
1779年,舍勒(瑞典化学家,氧气的发现人之一)指出,铅或石墨与molybadenite是两种不同的物质。他发现,硝酸对石墨没有影响,而与molybadenite反应,获得一种白粉末;将它与碱溶液共同煮沸,结晶后析出一种盐。他认为,这种白粉末是一种金属氧化物(实际上是氧化钼);它与木炭混合经高温加热后没有获得金属,但与硫共热后得到原来的molybadenite。
1782年,舍勒的好友、瑞典矿场主埃尔摩(又译作耶尔姆)用亚麻籽油调过的木炭和钼酸混合物密闭灼烧,从molybadenite中分离出金属,命名为molybdenum,元素符号定为Mo。中国将其译成“钼”。它得到了曾发现铈、硒、硅、钽、钍等元素的瑞典化学家贝齐里乌斯的承认。
钼金属在空气中灼烧,会放出金黄光芒;不同氧化态的钼离子有不同的颜。直到钼被发现100多年后的1893年,M.莫思森才在电炉里熔炼炭和三氧化钼的混合物,首次获得含钼92%~96%的铸态金属。
貌不惊人用途广
钼的发现虽然已有200多年历史,但大规模开发利用还是本世纪尤其近几十年的事。
钼及钼合金的用途十分广泛,这是因为它有许多特性,如强度高,热膨胀系数低,优良的导热与导电性能,对熔融玻璃、熔盐及熔融金属有较高的防腐性,还可提高薄涂料的耐磨性。
合金钢、不锈钢、工具钢及铸铁是钼的主要应用领域,其生产量决定着钼的需求。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天领域的各种高温部件。金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。纯钼丝用于高温电炉和电火花加工以及线切割加工。钼片用来制造无线电器材和X射线器材。钼在其他合金领域及化工领域的应用也不断扩大。合金钢中加钼,可以提高材料弹性限、抗腐蚀性能以及保持永久磁性等。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。
二硫化钼是一种重要的润滑剂,用于航天和机械工业领域。除此之外,二硫化钼因其的抗硫性质,可以在一定条件下催化一氧化碳加氢制取醇类物质,是很有前景的化学催化剂。
钼金属还逐步应用于核电、新能源等领域。
钼也是植物所的微量元素之一,没有它,植物就无法生存。钼在农业上可用作微量元素化肥。
人体各种组织都含钼,体内铜的总量为9毫克,以肝、肾中含量高。钼-99是钼的放射性同位素之一,在医院里用于制备锝-99。锝-99是一种放射性同位素,病人服用后可用于内脏器官造影。用于该种用途的钼-99通常用氧化铝粉吸收后存储在相对较小的容器中,当钼-99衰变时生成锝-99。
沙场硬汉显身手
人们曾在14世纪的一把日本武士剑中发现含有钼,这是钼早发现被应用于军事用途。1891年,法国斯奈德公司率先把钼作为合金元素生产了含钼装甲板。他们发现,钼的密度仅是钨的一半。这样一来,在许多钢铁合金应用领域,钼有效取代了钨。次世界大战的爆发,导致了钨需求量的剧增和钨铁供应的度紧张,钼由此在许多高硬度和耐冲击钢中取代了钨。钼需求的增长促使了人们对钼的深入研究。当时,美国科罗拉多州的大型矿山克莱麦克斯矿随之开发,并于1918年投产。
因为钼的重要性,各国政府视其为战略性金属。由于其耐高温烧蚀,钼在20世纪初被大量应用于制造装备,主要用于火炮内膛、火箭喷口的制造。现代高、精、尖装备对材料的要求更高,如钼和钨、铬、钒的合金用于制造军舰、火箭、卫星的合金构件和零部件。
钼合金是以钼为基体加入其他元素而构成的有合金,主要合金元素有钛、锆、铪、钨及稀土元素。钼合金有良好的导热、导电性和较低的膨胀系数,在高温下(1100~1650℃)有较高强度,比钨容易加工,可用作电子管的栅和阳、电光源的支撑材料以及用于制作压铸和挤压模具、航天器的零部件等。
次世界大战的结束导致了钼需求锐减。要解决这个问题,就得开发新的应用领域。不久,新型低钼合金钢在汽车工业生产中得到了。从此,钼作为合金元素在钢铁和其他领域的开发研究进入了一个新的阶段。
20世纪30年代末,钼已经是被广泛使用的工业原料。“二战”战后重建,再一次刺激了人们对钼在工业领域应用的开发与研究,给许多含钼工具钢的应用开辟了广阔的市场。如今,合金钢、不锈钢、工具钢及铸铁依然是钼的主要应用领域。
资源待研发
钼在地壳中主要存在于花岗岩类岩石中,钼矿石比较单一,主要是硫化矿石。
由于钼在军工方面的用途,世界强国纷纷把钼列为需要实行战略储备的矿产资源。战略矿产储备或矿产品战略储备,主要是针对那些对国家有战略意义、国内又相对稀缺的矿种所建立的储备。目前,世界上有10个国家建立有战略矿产储备制度。
我国是钼矿资源国家,总储量达860万吨(以钼量计),其中,工业储量约350万吨,居世界第二位。我国钼矿资源具有储量大、分布广、大型矿床多、矿体埋藏浅等特点,对的钼市场有重要影响。
美国是世界第二大钼资源国。智利、加拿大、俄罗斯和亚美尼亚也是钼资源较为的国家。
宜春本地废钼回收哪个好
钼是一种化学元素,符号为Mo,原子序数42,是一种银白的过渡金属。钼具有高强度、高熔点、耐腐蚀、耐磨研等特性,这些特性使得钼在众多领域都有广泛的应用。
在金属市场中,钼虽然不像黄金、白银那样为大众所熟知,但它却有着举足轻重的。从产量和储量来看,钼资源储量相对集中,主要分布在美国、中国、智利等国家。中国是世界上钼资源为的国家之一,同时也是大的钼生产国和消费国。
钼在钢铁工业中扮演着的角。它是一种优良的合金元素,能够提高钢的强度、硬度、韧性和耐热性等性能。在不锈钢中加入钼,可以增强其抗点蚀和缝隙腐蚀的能力,广泛应用于化工、海洋等领域。在工具钢和高速钢中,钼能提高刀具的耐磨性和切削性能,使得加工效率大幅提升。以下是钼在不同类型钢铁中的作用对比:
钢铁类型
钼的作用
不锈钢
增强抗点蚀和缝隙腐蚀能力
工具钢和高速钢
提高耐磨性和切削性能
耐热钢
提高高温强度和抗氧化性能
除了钢铁工业,钼在电子、化工、能源等领域也有重要应用。在电子行业,钼因其良好的导电性和热稳定性,被用作电子管、晶体管和集成电路的电材料。在化工领域,钼化合物是重要的催化剂,可用于石油加氢精制、有机合成等过程。在能源领域,钼基合金被用于制造燃气轮机的叶片、火箭发动机的喷嘴等高温部件。
从市场角度来看,钼的价格波动受到多种因素的影响,包括经济形势、钢铁行业的需求、钼矿的供应情况等。当经济增长强劲,钢铁需求旺盛时,钼的价格往往会随涨;反之,当经济增长放缓,钢铁行业需求下降时,钼的价格也会受到抑制。此外,钼矿的开采和生产受到资源储量、开采成本、要求等因素的制约,供应的稳定性也会对价格产生影响。
总的来说,钼作为一种重要的战略金属,在金属市场中具有不可替代的。它的广泛应用和性能,使得其在推动现代工业发展和科技进步方面发挥着重要作用。随着经济的不断发展和科技的不断进步,钼的需求有望继续保持增长态势。
钼是一种白金属,硬度高且坚韧,在常温和高温下强度很高,在合金钢、特钢、工具钢以及结构钢中均有应用。人体各组织内页含有钼微量元素。那么,A股市场中生产钼的上市公司有哪些?下面就来具体了解一下。
生产钼的上市公司有哪些?生产金属钼的上市公司一览
新华龙(603399) :经过多年的研发和实践经验积累,公司已经取得11项专利权,并在钼精矿焙烧、钼铁冶炼和钼酸铵加工等生产过程中总结出一整套国内的工艺技术,形成原料要求低、产品质量稳定、热能利用率高的节约型生产模式。目前,公司焙烧钼精矿和钼酸铵产品收率可达98.5%以上,处于行业领先水平。
金钼股份(601958) :公司是亚洲大的钼产品生产商,年产折钼金属14000吨左右,占国内市场的30%以上。公司生产钼炉料、钼化工、钼金属三大系列二十余种品质一流的产品。公司焙烧钼精矿粉、焙烧钼精矿块、钼铁等钼炉料产品约20000吨,约占钼炉料产品产量的6%。
炼石有(000697) :2014年7月份,公司全资子公司陕西炼石矿业决定总投资9596.55万元实施对钼铼精矿(即钼精粉)进行综合回收利用。包括建设投资4313.02万元,流动资金5283.53万元。项目建设期一年,建成后,年处理能力为钼铼精矿3000吨,年产出二烷基二硫代氨基甲酸钼4000吨、二水钼酸钠2104.35吨、高铼酸铵1.00吨、硫酸钠3300.66吨。
兴业矿业(000426) :公司所在的内蒙矿产资源储量居全国之首,现已查明铅金属资源储量893万吨,锌金属储量2,270万吨,均居全国位;查明钼金属资源储量135.79万吨,居全国第三位,铁矿基础储量13.57亿吨,居全国第四位。
洛阳钼业(603993) :公司位于国内钼资源量的河南省洛阳市栾川县,地缘优势显著。2008年1月18日,河南省人民政府转发了《河南省钼矿资源整合实施意见》,该意见明确指出,钼矿资源整合的主要任务是完成相关钼矿探矿权、采矿权整合和钼加工企业联合重组;推动钼矿资源向规模大、技术水平高、深加工能力强、资源综合利用率高的钼矿资源开发优势企业集中。
闽东电力(000993) :地质四队以寿宁县天池银金矿、周宁县周挡金矿、周宁县王宿金矿、屏南县里洋钼矿的四个100%探矿权评估作价857.43万元