镍镉蓄电池(Nickel-cadmium battery) 正极活性主要由镍制成,
负极活性主要由镉制成的一种碱性蓄电池。正极为氢氧化镍,负极为镉
电解液是溶液。其优点是轻便、抗震、寿命长,常用于小型电子设备。
中文名:镍镉蓄电池
外文名:Nickel-cadmium battery
电解液通:或溶液
正极材料:氢氧化亚镍和石墨粉的混合物
负极材料:海绵网筛状镉粉和氧化镉粉
1工作原理
编辑镍镉蓄电池的正极材料为氢氧化亚镍和石墨粉的混合物,负极材料为海绵网筛状镉粉和氧化镉粉,电解液通常为或溶液
。当温度较高时,使用密度为1.17~1.19(15℃时)的溶液。当温度较低时,使用密度为1.19~1.21(15℃时)的
溶液。在-15℃以下时,使用密度为1.25~1.27(15℃时)的溶液。为兼顾低温性能和荷电保持能力,密封镍镉蓄电池采用密度为1.40
(15℃时)的溶液。为了蓄电池的容量和循环寿命,通常在电解液中加入少量的氢氧化锂(大约每升电解液加15~20g)。
镍镉蓄电池充电后,正极板上的活性变为氢氧化镍〔NiOOH〕,负极板上的活性变为金属镉;镍镉电池放电后,正极板上的活性变
为氢氧化亚镍,负极板上的活性变为氢氧化镉。
2化学反应
编辑放电中的化学反应
(1)负极反应
负极上的镉失去两个电子后变成二价镉离子Cd2+,然后立即与溶液中的两个氢氧根离子OH-结合生成氢氧化镉Cd(OH)2,沉积到负极板上。
(2)正极反应
正极板上的活性是氢氧化镍(NiOOH)晶体。镍为正三价离子(Ni3+),晶格中每两个镍离子可从外电路负极转移出的两个电子,生成
两个二价离子2Ni2+。与此同时,溶液中每两个水分子电离出的两个氢离子正极板,与晶格上的两个氧负离子结合,生成两个氢氧根离子,
然后与晶格上原有的两个氢氧根离子一起,与两个二价镍离子生成两个氢氧化亚镍晶体。
充电中的化学反应
充电时,将蓄电池的正、负极分别与充电机的正极和负极相连,电池内部发生与放电时完全相反的电化学反应,即负极发生还原反应,正极发
生氧化反应。
(1)负极反应
充电时负极板上的氢氧化镉,先电离成镉离子和氢氧根离子,然后镉离子从外电路电子,生成镉原子附着在极板上,而氢氧根离子溶
液参与正极反应。
(2)正极反应
在外电源的作用下,正极板上的氢氧化亚镍晶格中,两个二价镍离子各失去一个电子生成三价镍离子,同时,晶格中两个氢氧根离子各释放出
一个氢离子,将氧负离子留在晶格上,释出的氢离子与溶液中的氢氧根离子结合,生成水分子。然后,两个三价镍离子与两个氧负离子和剩下
的二个氢氧根离子结合,生成两个氢氧化镍晶体。
蓄电池充电终了时,充电电流将使电池内发生分解水的反应,在正、负极板上将分别有大量氧气和析出。从上述电极反应可以看出,氢摒
化钠或并不直接参与反应,只起导电作用。从电池反应来看,充电中生成水分子,放电中消耗水分子,因此充、放电中
电解液浓度变化很小,不能用密度计检测充放电程度。
3相关概念编辑端电压
充足电后,立即断开充电电路,镍镉蓄电池的电动势可达1.5V左右,但很快就下降到1.31-1.36V。 镍镉蓄电池的端电压随充放电而变化,
可用下式表示:
U充=E充+I充R内
U放=E放-I放R内
从上式可以看出,充电时,电池的端电压比放电时高,而且充电电流越大,端电压越高;放电电流越大,端电压越低。
当镍镉蓄电池以放电电流放电时,平均工作电压为1.2V。采用8h率放电时,蓄电池的端电压下降到1.1V后,电池即放完电。
容量及影响因素
蓄电池充足电后,在一定放电条件下,放至规定的终止电压时,电池放出的总容量称为电池的额定容量,容量Q用放电电流与放电时间的乘积来
表示,表示式如下:
Q=I·t(Ah)
镍镉蓄电池容量与下列因素有关:
① 活性的数量;
②放电率;
③ 电解液。
放电电流直接影响放电终止电压。在规定的放电终止电压下,放电电流越大,蓄电池的容量越小。
使用不同成分的电解液,对蓄电池的容量和寿命有一定的影响。通常,在高温下,为了电池容量,常在电解液中添加少量氢氧化锂,
组成混合溶液。实验证明:每升电解液中加入15~20g含水氢氧化锂,在常温下,容量可4%~5%,在40℃时,容量可20%。然而,电解液
中锂离子的含量过多,不仅使电解液的电阻增大,还会使残留在正极板上的锂离子(Li+)慢慢渗入晶格内部,对正极的化学变化产生有害影响
。
电解液的温度对蓄电池的容量影响较大。这是因为随着电解液温度升高,极板活性的化学反应也逐步。 电解液中的有害杂质越多,蓄
电池的容量越小。主要的有害杂质是碳酸盐和硫酸盐。它们能使电解液的电阻增大,并且低温时容易结晶,堵塞极板微孔,使蓄电池容量显着
下降。此外,碳酸根离子还能与负极板作用,生成碳酸镉附着在负极板表面上,从而引起导电不良,使蓄电池内阻增大,容量下降。
内阻
镍镉蓄电池的内阻与电解液的导电率、极板结构及其面积有关,而电解液的导电率又与密度和温度有关。电池的内阻主要由电解液的电阻决定
。和溶液的电阻系数随密度而变。18℃时溶液和溶液的电阻系数小。
效率与寿命
在正常使用的条件下,镍镉电池的容量效率ηAh为67%-75%,电能效率ηWh为55%~65%,循环寿命约为2000次。
容量效率ηAh和电能效率ηWh计算公式如下:
I放·t放
ηAh= ---------- X 100%
I充·t充
U放·I放·t放
ηAh= --------------- X 100%
U充·I充·t
(U充和U放应取平均电压)
记忆效应
镍镉电池使用中,如果电量没有全部放完就开始充电,下次再放电时,就不能放出全部电量。比如,镍镉电池只放出80%的电量后就开始充
电,充足电后,该电池也只能放出80%的电量,这种现象称为记忆效应。
电池全部放完电后,极板上的结晶体很小。电池部分放电后,氢氧化亚镍没有完全变为氢氧化镍,剩余的氢氧化亚镍将结合在一起,形成较大
的结晶体。结晶体变大是镍镉电池产生记忆效应的主要原因
从权威人士处获悉,环保部近日已依托监测总站组织开展2013年部分重点流域水质生物监点工作。此次试点工作选取14个城市重点流域监测站点,开展水质重金属、挥发性有机物及生物毒性等多方面监测,以在“十二五”期间在已有水质5项常规监测基础上,新增11项水质生物性指标监测。发达上世纪90年代已建立起涵盖常规及生物性等多方面的水质监测网络,但我国目前尚未形成常规监测网络。按照相关规划,在“十二五”期间,我国将建立起覆盖数千个监测站点的地表水生物监测网络。此次14个试点监测项目分为生物多样性、鱼类生物残留、水体富营养化、鱼类生长观测、生物毒性监测和例行理化监测五大项内容11项指标,其中重要的是包括、铅、镉、铬、砷等主要重金属含量指标和生物毒性指标。此次14个试点监测工作的启动,以及地表水生物监测网络的逐步建立,意味着国内水质监测市场将再拓新空间。据市场,到“十二五”末,在水质生物监测网络建立后,可带动的监测仪器市场规模可达100亿元以上。目前主流的生物监测技术主要有发光毒性检测和化学发光毒性检测。长期以来,由于不受,国内鲜有从事此项业务研发的企业,但近年来,国内不少公司已开始逐步涉足此领域。据了解,目前在水质生物毒性监测技术与设备研发方面相对成熟的有深圳水务集团下属的开天源自动化公司,以及A股的聚光科技,这两家公司目前已研发出成品。聚光科技2010年6月推出了具有自主知识产权的TOX-2000水质综合毒性在线监测仪。其他的诸如天瑞仪器、先河环保等也在介入,但仍处于可研阶段。仪器仪表