商宇蓄电池技术报价销售
W系列铅酸蓄电池
技术参数:
型号 | 描述 | 重量 |
GW1220 | 12V20AH Dimension:181*77*167 | 5.46kg |
GW1224 | 12v24AH Dimension:165*126*174 | 7.1kg |
GW1238 | 12v38AH Dimension:198*166*172 | 12kg |
GW1265 | 12v65AH Dimension:350*167*178 | 19.5kg |
GW12100 | 12v100AH Dimension:407*174*210 | 29.4kg |
GW12120 | 12v120AH Dimension:407*174*210 | 35.9kg |
GW12150 | 12V150AH Dimension: 484*171*241 | 43kg |
GW12200 | 12v200AH Dimension:532*206*216 | 55kg |
存储寿数可达2.5年
因为纯铅薄板(Red)系列蓄电池高纯度的、更耐腐蚀的原生铅作为板栅资料,其内部杂质很少,自放电率低,有用运用中因频频保护而导致能耗添加。
物质掉落的原因如下;
1.板制造时涂膏工艺欠好或化成不均匀,圣阳蓄电池板栅架贴得不紧四。
2.充电电流过大,特则是充电终朗。
3.常常义行过充电或大电流放电。
4.电解液温度过高。
5.所运用的浓硫酸和蒸馏水不纯。
1)输入输出变压器尺寸大。
2)用于消除高次谐波的输出滤波器尺寸大。
3)变压器和电感产生音频噪声。
4)对负载和市电变化的动态响应性能较差。
6)输入无功率因数校正,对电网污染较严重。
7)成本高,对于小容量机型,无法与高频机相比。
世界UPS厂商在技术选型和将来发展趋势上都是以高频为主力方向的,30kVA及以下的UPS都以高频机为主,这与高频机负载动态响应速度快,能量密度高,体积小,噪声小,价格低(是小机)有很大关系,是高频机可以做到输入源功率因数校正,真正代表将来绿电源的发展趋势。
工频机与高频机的概念主要是对整流部分而言,工频机是可控整流,传统技术可做到12相整流;而高频机的整流是二管不控整流十IGBT的高频直流升压环节。对逆变器而言都是IGBT的SPWM高频逆变工作方式(除早期的可控硅逆变工作模式UPS,目前已经淘汰)。另外,工频机的输出变压器必不可少,由于其整流逆变等环节均为降压环节,因此在输出侧有升压变压器作为电压的调整。而高频机由于具有DC/DC升压环节,其输出侧不必要加升压环节(升压变压器),对于需要加装隔离变压器的现场,高频机也可按照要求加装隔离变压器选件,其作用也由原来的必要配置转变为可选配置。UPS的电气结构所以发生了更新变化,主要是由于元器件的发展,IGBT作为UPS的主要功率元件技术更加成熟,无论从容量、结构,还是性上都大大地提高了,加之UPS数字化程度不断深入促成了新一代大中型UPS的主流结构由原来的工频机转向高频机(正如当年晶闸管逆变器被大功率晶体管GTR取代,之后又被IGBT逆变器取一样)。UPS电气结构的更新直接的效果就是UPS主机体积的缩小,质量的减小,而更重要的是电气性能的提高。
免维护(寿命期内无需加酸加水)
使用严格的生产工艺,单体电压均衡性佳
采用特殊板栅合金,抗腐蚀性能及深循环性能好, 自放电极小
吸附式玻璃纤维技术使气体复合效率高达99%且内阻低,大电流放电性能优良
蓄电池由正极板、负极板、隔板、槽、盖、安全阀、回流条、端子、电解液等组成。
结构采用特殊板栅合金,抗腐蚀性能及深循环性能好, 自放电极小。
接线板、终端接头采用导电性能优良的材料,并具有防腐蚀措施。
蓄电池槽、盖、安全阀、极柱封口剂等材料具有阻燃性。在环境温度20~25℃时的浮充运行寿命应不低于10年。
除安全阀外,可以承受50kPa的正压或负压而不破裂、不开胶,压力释放后壳体无残余变形。
以30I10的大电流电流放电1min,极柱不熔断,其外观无异常。
封置90天后,其荷电保持能力不低于85%。
有较强的耐过充能力和过充寿命。以0.3I10电流连续充电160h后,外观无明显变形及渗液。
商宇蓄电池工作原理
阀控式蓄电池我们已经了解的很透彻了,也知道我们生活中哪些方面有运用到蓄电池,那么对于商宇蓄电池工作原理你知道多少呢?这里小编给大家具体的介绍一下商宇蓄电池的工作原理。
蓄电池组属于直流电源,其电路故障危害性比交流电源要大一般情况下,发现电气短路起火时,先要切断电源。对于交流电源而言,由于电能自上而下地来源于市电电网或柴油发电机组,当发生电气短路故障时,总会有一级保护器件产生动作,及时切断短路的电气电路。而当蓄电池组位于电源供电系统的末端,电能是自下而上提供的,只要越过了直流总配电屏的保护熔丝或蓄电池组的保护断路器,则不会再有其它的保护。发生短路故障时,往往无法有效地切断短路的电气电路。加上直流电流不像交流正弦波,它没有过零点时的瞬间电动势为零的过程,一旦发生电气短路易引起蔓延。而发生短路后的阻抗仅取决于导线线阻和蓄电池组的内阻,短路电流近似为无穷大。因此,蓄电池组直流电气短路的危害程度远大于交流电气短路。
<充电电流电压,时间按厂家规定执行,电池避免过充过放电。
<搬运,安装,使用过程中应避免电池正,负短路。蓄电池使用注意事项<拆装电池应由人员完成,若因机械损坏电池电液沾到了皮肤或衣服上。立即用清水冲洗。如果溅入眼睛,要尽快用大量的清水冲洗并立即上医院治疗。
<不同容量,不同制造商或新旧不同的电池请勿混用。
<勿用花纤布或海棉擦拭电池外壳。
<电池停搁6个月以上,使用前进行补充电。
阀控式蓄电池在开路状态下,正负极活性物质 和海绵状金属铅与电解液稀硫酸的反应都趋于稳定,即电极的氧化速率和还原速率相等,此时的电极电势为平衡电极电势。当有充放电反应进行时,正负极活性物质 和海绵状金属铅分别通过电解液与其放电态物质硫酸铅来回转化。最基本的电极反应式为Pb+PbO2+2H2SO4 2PbSO4+2H20。
阀控式商宇蓄电池充电过程:蓄电池将外电路过来的电能转化为化学能储存起来。此时,负极上,硫酸铅被还原为金属铅的速度大于硫酸铅的形成速度,导致硫酸铅转变为金属铅;同样,正极上,硫酸铅被氧化为PbO2的速度也增大,正极转变为PbO2。
在蓄电池充电的后期,正负极都分别有气体析出,通常认为,正极充电至其满荷电量的70%时有氧气析出,而负极充电至90%时有氢气析出,VRLA电池在设计上就是要让氢气尽可能不析出,充电后期析出的氧气也尽可能使其内部复合,避免氧气损失,并且即使氧气排除,也通过安全阀中的滤酸片减少酸雾等的析出,避免电解液损失
蓄电池放电过程:蓄电池将化学能转变为电能输出。对负极而言是失去电子被氧化,形成硫酸铅;对正极而言,则是得到电子被还原,同样是形成硫酸铅。反应的净结果是外电路中出现了定向移动的负电荷。由于放电后两极活性物质均转化为硫酸铅,所以叫“双极硫酸盐化”理论。
因此阀控式商宇蓄电池的设计、制造和使用就要保证大力神蓄电池除了安全阀以外,其他部位实现密封,尤其在运行过程中尽可能少的气体和酸雾析出,且酸雾和酸液不能在安全阀开启之前在商宇蓄电池上任何部位出现。