详细说明
-
产品参数
-
品牌:艾诺斯
-
容量范围:31ah-190ah
-
链接方式:前置端子连接
-
寿命:12年
- 产品优势
-
产品特点:
PowerSafe V-FT电池受益于EnerSys的最先进的薄板纯铅制造平台。单体电池采用气体重组技术设计,通过控制充电过程中氢和氧的演变,不需要定期加水。正极板产生的氧气通过微孔分离器扩散到负极板,并通过电池内的一系列化学反应,重新组合形成水。每个电池都包含自己的安全阀,当电池内压力升高时,允许气体可控释放。
-
服务特点:
原装进口,保证正品
关于艾诺斯蓄电池
早在1891年就开始生产各种蓄电池,是世界上最早的电池制造商之一。经过逾百年的发展,已成为欧洲及至世界工业电池的权威。在1982年利用其专利注册的R.E.(Recombination Electrolyte)再化合技术成功生产了阀控式密封铅酸蓄电池。这一技术的引进不仅提升了电池的性能,还增强了产品的环保特性,因为这种密封设计减少了电池在使用过程中对环境的污染。此外,艾诺斯的产品如NexSys®, Odyssey® 和 Genesis® 等都采用了高端技术来满足不同客户的需要。
胶体电池详解?
也被称为凝胶电池或密封铅酸(SLA)电池,代表了铅酸电池技术的一次重要改进。相较于传统的含有自由流动液态电解质的铅酸电池,胶体电池使用了硅酸盐等增稠剂,将硫酸和水的混合电解质转变为一种稳定的凝胶状物质。这种带来了若干显著优点:维护需求低:由于其密封性质,减少了水分蒸发和氢气逸出,因此胶体电池可以长时间保持无需额外补充水分或其他维护工作。泄漏风险减少:凝胶状电解质大大降低了因电池倾覆导致的泄漏问题,使得胶体电池能够适应包括直立、倾斜甚至倒置的不同安装方式。高性价比:从经济角度考虑,胶体电池通常在价格上优于其他更的电池技术,尤其是在大规模部署时,其性价比显得尤为突出。循环寿命与性:虽然胶体电池在这方面有改进,但其充放电次数和整体寿命通常仍旧不及磷酸铁锂电池。
影响电池容量的因素有哪些?
当电解液温度较低时,粘度会增加,渗透性会降低,导致电池容量下降。当电解液温度较低时,电解液的溶解度和电离度也会降低,也会加剧电池容量的下降。注意:寒冷地区注意电池缘。适当增加电解液的密度,可以降低电解液的内阻,改善其渗透性,有利于提高电池的容量。但密度过高时,电解液内阻增大,但渗透性降低,导致电池容量下降。因此,当电解质的密度低时,电池的容量和放电电流可以增加。所以在冬天电解液不
电池板表面积越大,板越多,参与反应的活性物质越多,容量越大。此外,电板越薄,活性物质的孔隙率越好,电解液越容易渗透到电板中,活性物质的利用率越高,输出容量越大。
胶体(GEL)蓄电池特点?
1) 优点:胶体电池采用富液设计,深放电的恢复性能较好,较好的,电解液干涸,由于胶体的固定作用,胶体电池几乎不存在电解液分层现
象,较高环境温度下,胶体电池有更长的使用寿命,富液式设计,不易产生热失控
2) 缺点:使用初期,氧复合率低,酸雾排出较多,胶体电池对电池充电较为敏感,如电池倾斜或卧放,是胶的质量不稳定时,电池内胶体可能会流出。不适合快充电和高倍率放电,低温环境下不适合薄型板设计
阴吸收式VRLA电池与胶体电池的比较:
1)使用初期无气体逸出,胶体电池在使用初期需排风装置
2)电池内阻小,大电流放电特性优于胶体电池。
3)电池的一致性和均一性好,因电解液的扩散性和均匀性优于胶体电池。
4)、胶体电池,(是管状电)使用寿命较长,不易热失控
空调故障导致电池热失控?
引起电池热失控的原因:环境温度过高;电池参数设置不合理,导致电池过充电。阀失效,电池内部压力过大。电池安装时,中间需要预冷散热通道,小不得少于10mm。正板泥化脱落,泥化原因:电池充放电过程中,正活性物质在PbO2和PbSO4之间转化。正反应物的体积变化,PbSO4体积是PbO2体积的2.68倍。正活性物质是坚硬的网络结构,正活性物质的体积在不断反复收缩和膨胀,就使二氧化铅粒子之间的相互结合逐渐减弱,造成正活性物质泥化。影响因素:频繁放电,加速正活性物质的体积膨胀和收缩,从而导致电池板的软化。参数设置不合理,电池过充电或过度放电,正活性物质体积变化过大,加快活性物质软化速率,提前失效。
蓄电池的工作原理?
铅蓄电池由正板群、负板群、电解液和容器等组成。充电后的正板是棕褐的二氧化铅(PbO2),负板是灰的绒状铅(Pb),当两板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负板的周围,而正板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH)4)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正板上,使正板带正电。由于负板带负电,因而两板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正流向负。在放电过程中,负板上的电子不断经外电路流向正板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负移动,硫酸根负离子到达负板后与铅正离子结合成硫酸铅(PbSO4)。在正板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正板附近的硫酸根负离子结合成硫酸铅附着在正上。
锂电池组容量修复均衡器
锂电池组容量修复均衡器在现代能源存储领域扮演着举足轻重的角。随着电动汽车、太阳能储能系统以及各类便携式设备的普及,对锂电池性能的要求日益提高。然而,由于生产工艺、使用环境等多种因素,锂电池组在使用过程中往往会出现容量衰减不均衡的问题,这不仅影响了设备的续航性能,更可能导致隐患。因此,锂电池组容量修复均衡器应运而生,成为解决这一问题的关键工具。