您的位置:供应信息分类 > 电工 > 电池 > 蓄电池
潮州PowerSafe蓄电池生产商

名称:潮州PowerSafe蓄电池生产商

供应商:北京德胜金轩科技有限公司

价格:面议

最小起订量:1/台

地址:昌平区东小口镇中东路400号院2号楼14层2单元

手机:18518027780

联系人:常洪波 (请说在中科商务网上看到)

产品编号:219942519

更新时间:2025-08-28

发布者IP:27.222.158.8

详细说明
产品参数
品牌:艾诺斯
容量范围:31ah-190ah
链接方式:前置端子连接
寿命:12年
产品优势
产品特点: PowerSafe V-FT电池受益于EnerSys的最先进的薄板纯铅制造平台。单体电池采用气体重组技术设计,通过控制充电过程中氢和氧的演变,不需要定期加水。正极板产生的氧气通过微孔分离器扩散到负极板,并通过电池内的一系列化学反应,重新组合形成水。每个电池都包含自己的安全阀,当电池内压力升高时,允许气体可控释放。
服务特点: 原装进口,保证正品

  关于艾诺斯蓄电池

  早在1891年就开始生产各种蓄电池,是世界上最早的电池制造商之一。经过逾百年的发展,已成为欧洲及至世界工业电池的权威。在1982年利用其专利注册的R.E.(Recombination Electrolyte)再化合技术成功生产了阀控式密封铅酸蓄电池。这一技术的引进不仅提升了电池的性能,还增强了产品的环保特性,因为这种密封设计减少了电池在使用过程中对环境的污染。此外,艾诺斯的产品如NexSys®, Odyssey® 和 Genesis® 等都采用了高端技术来满足不同客户的需要。

  电池的容量与活性物质的数量、电板的厚度、活性物质的孔隙率、电板的结构、生产工艺、放电电流、电解液温度、电解液密度等因素有关。放电电流对电池容量的影响。放电电流越大,电池的容量越低。如果放电电流过大,单位时间内参与反应的活性物质和硫酸的量会增加。由于板孔内硫酸消耗过快,板外硫酸无法渗入板内,所以板孔内电解液密度下降过快,电池端电压下降过快,无法提前达到终止电压。由于硫酸无法渗透到电板内部,反应发生在电板表面,生成的硫酸铅也附着在电板表面,阻碍了硫酸渗透到电板内部,因此电板中的活性物质无法充分利用,电池容量降低。注意事项:用起动机起动发动机时,蓄电池会大电流放电,端电压急剧下降,输出容量降低,容易损坏。所以需要注意的是,启动时间不要超过5秒,两次连续启动的间隔时间要在15秒。

  蓄电池的基本概念是什么?

  阀控密封式蓄电池:蓄电池正常使用时保持气密和液密状态。当内部气压超过预定值时,阀自动开启,释放气体。当内部气压降低后,阀自动闭合使其密封,外部空气进入蓄电池内部。蓄电池在使用寿命期间,正常使用情况下无需补加电解液。铅酸蓄电池:电主要由铅制成,电解液是硫酸溶液的一种蓄电池。开路电压:电池充满电无负载接入时的端电压。闭路电压:电池工作时电压。 容量:蓄电池能输出的能量。规定放电条件下蓄电池所放出的电量。通常以单位容积的容量或以单位重量的容量进行比较。理论容量-----电池理论上活性物质进行转化所能放出的容量额定容量-----在设计电池时,规定电池在一定放电制度下应能放出的容量,实际容量-----制造出来的电池,在一定放电制度下,电池实际放出的容量

  为锂离子电池的低温性能,需要做好以下几点:

  01.形成薄而致密的 SEI 膜;

  ◉02. Li+ 在活性物质中具有较大的扩散系数;

  03.电解液在低温下具有高的离子电导率。

  此外,研究中还可另辟蹊径,将目光投向另一类锂离子电池——全固态锂离子电池。相较常规的锂离子电池而言,全固态锂离子电池,尤其是全固态薄膜锂离子电池,有望彻底解决电池在低温下使用的容量衰减问题和循环问题。

  测试电池容量之电池内阻测量法

  电池内阻反映了电池与外部电路的电流传递能力,因此也是判定电池容量的一种方法。通常,内阻越小的电池输出电压稳定,容量也越大。在测试时,需要选择对应电池类型的内阻表,将电池性与测量仪器相连,在稳定状态下进行测试。无论采用何种方法测试电池容量,都需要注意以下几点:

  1. 首先需要确保测试所使用的工具和仪器具有准确的性能。

  2. 充满电的电池需要在室温下静置10分钟后再进行测试以达到佳效果。

  3. 在测试时要减小测试误差,需要进行多次测试取平均值,这样能够更加准确地评估电池容量。

  在现代生活中,电子设备层出不穷,电池也成为了人们生活和工作中必不可少的配件。为了确保电池的稳定表现和正常使用寿命,对电池容量的测试是必不可少的。以上列举了三种主要的测试方法,但在实际操作中,应根据不同的情况选择适合的测试方法,并确保测试结果的准确性和稳定。

  磷酸盐体系正材料的低温特性?

  LiFePO4因佳的体积稳定性和性,和三元材料一起,成为目前动力电池正材料的主体。磷酸铁锂低温性能差主要是因为其材料本身为缘体,电子导电率低,锂离子扩散性差,低温下导电性差,使得电池内阻增加,所受化影响大,电池充放电受阻,因此低温性能不理想。在研究低温下LiFePO4的充放电行为时发现,其库伦效率从55℃的100%分别下降到0℃时的96%和–20℃时的64%;放电电压从55℃时的3.11V递减到–20℃时的2.62V。Xing等利用纳米碳对LiFePO4进行改性,发现,添加纳米碳导电剂后,LiFePO4的电化学性能对温度的敏感性降低,低温性能得到改善;改性后LiFePO4的放电电压从25℃时的3.40V下降到–25℃时的3.09V,降低幅度仅为9.12%;且其在–25℃时电池效率为57.3%,高于不含纳米碳导电剂的53.4%。

  制约锂离子电池低温性能的因素有哪些?

  低温环境下,电解液的黏度增大,甚至部分凝固,导致锂离子电池的导电率下降。低温环境下电解液与负、隔膜之间的相容性变差。低温环境下锂离子电池的负析出锂严重,并且析出的金属锂与电解液反应,其产物沉积导致固态电解质界面(SEI)厚度增加。低温环境下锂离子电池在活性物质内部扩散系统降低,电荷转移阻抗(Rct)显著增大。