详细说明
-
产品参数
-
品牌:艾诺斯
-
容量范围:31ah-190ah
-
链接方式:前置端子连接
-
寿命:12年
- 产品优势
-
产品特点:
PowerSafe V-FT电池受益于EnerSys的最先进的薄板纯铅制造平台。单体电池采用气体重组技术设计,通过控制充电过程中氢和氧的演变,不需要定期加水。正极板产生的氧气通过微孔分离器扩散到负极板,并通过电池内的一系列化学反应,重新组合形成水。每个电池都包含自己的安全阀,当电池内压力升高时,允许气体可控释放。
-
服务特点:
原装进口,保证正品
关于艾诺斯蓄电池
早在1891年就开始生产各种蓄电池,是世界上最早的电池制造商之一。经过逾百年的发展,已成为欧洲及至世界工业电池的权威。在1982年利用其专利注册的R.E.(Recombination Electrolyte)再化合技术成功生产了阀控式密封铅酸蓄电池。这一技术的引进不仅提升了电池的性能,还增强了产品的环保特性,因为这种密封设计减少了电池在使用过程中对环境的污染。此外,艾诺斯的产品如NexSys®, Odyssey® 和 Genesis® 等都采用了高端技术来满足不同客户的需要。
电池寿命和失效的原因?
漏液,电池组出现漏液,比如阀、柱、槽盖等部位出现液体溢出或堆积白结晶体,如图8所示。漏液经外壳流向电池架、下层电池,造成电池架腐蚀、甚至有可能造成下层电池短路,发生起火、爆炸情况。产生的主要原因有:热封、胶封工艺不良;安装、搬运过程磕碰,导致电池密封性能破坏。中国电信在建设规范和维护规程中明确要求:新装电池铺设电池缓冲缘垫,电池室内宜安装早期烟雾报警。硫化(负板盐化),当蓄电池经常处于充电不足或者过放电后, 负板的表面附着一层白坚硬的硫酸铅结晶体,充电后依旧无法转化为活性物质,导致电池容量下降,这种现象称为“不可逆硫酸盐化”,简称“硫化”。硫化的原因:蓄电池长期充电不足或放电后没有及时充电,部分PbSO4溶解后析出并在板结晶形成硫化;电解液液面过低,使板上部与空气接触而被氧化后硫化;长期过量放电或小电流深度放电,使板深处活性物质的孔隙内生成PbSO4。
锂电池组容量衰减不均衡的原因
锂电池组容量衰减不均衡的原因多种多样。首先,生产工艺的差异导致电池单体之间存在细微的性能差异。其次,使用环境的不同,如温度、湿度等因素,也会影响电池的性能。此外,充放电过程中的管理不当,如过充、过放等,也会加速电池容量的衰减。这些因素共同作用,使得锂电池组在长时间使用后,容量衰减不均衡的问题逐渐凸显。
锂离子电池正材料的低温特性是怎么样的?
层状结构,既拥有一维锂离子扩散通道所不可比拟的倍率性能,又拥有三维通道的结构稳定性,是早商用的锂离子电池正材料。其代表性物质有LiCoO2、Li(Co1-xNix)O2和Li(Ni,Co,Mn)O2等。谢晓华等以LiCoO2/MCMB为研究对象,测试了其低温充放电特性。结果显示,随着温度的降低,其放电平台由3.762V(0℃)下降到3.207V(–30℃);其电池总容量也由78.98mA·h(0℃)锐减到68.55mA·h(–30℃)。尖晶石结构正材料的低温特性,尖晶石结构LiMn2O4正材料,由于不含Co元素,故而具有成本低、性的优势。然而,Mn价态多变和Mn3+的Jahn-Teller效应,导致该组分存在着结构不稳定和可逆性差等问题。彭正顺等指出,不同制备方法对LiMn2O4正材料的电化学性能影响较大,以Rct为例:高温固相法合成的LiMn2O4的Rct明显高于溶胶凝胶法合成的,且这一现象在锂离子扩散系数上也有所体现。究其原因,主要是由于不同合成方法对产物结晶度和形貌影响较大。
阀控铅酸电池的基本结构?
正负板:板栅+活物质(提供电化学活性物质,是反应场所,电池容量的制約者)。
隔板:AGM(超细玻璃棉隔板:缘、吸附电解液、提供气体通道)
电解液:硫酸,离子水、添加剂。外壳:ABS工程塑料,PP,PVC等。
铅零件:柱(铅合金嵌铜芯)、连接条,汇流条等;阀:保持蓄電池內部氣密和均衡內部壓力。
铅酸蓄电池的工作原理?
铅酸蓄电池用填满海绵状铅的铅板作负,填满二氧化铅的铅板作正,并用1.28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负,发生氧化反应,被氧化为硫酸铅;二氧化铅是正,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个[2]铅蓄电池串联成12V的电池组。铅蓄电池在使用一段时间后要补充蒸馏水,使电解质保持含有22~28%的稀硫酸。放电时,正反应为:PbO2 + 4H+ + SO42- + 2e- = PbSO4 + 2H2O负反应: Pb + SO42- - 2e- = PbSO4;总反应: PbO2 + Pb + 2H2SO4 === 2PbSO4 + 2H2O (向右反应是放电,向左反应是充电)。
蓄电池的工作原理?
铅蓄电池由正板群、负板群、电解液和容器等组成。充电后的正板是棕褐的二氧化铅(PbO2),负板是灰的绒状铅(Pb),当两板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负板的周围,而正板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH)4)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正板上,使正板带正电。由于负板带负电,因而两板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正流向负。在放电过程中,负板上的电子不断经外电路流向正板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负移动,硫酸根负离子到达负板后与铅正离子结合成硫酸铅(PbSO4)。在正板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正板附近的硫酸根负离子结合成硫酸铅附着在正上。