RJ-RD908雷达物位计厂商销售

名称:RJ-RD908雷达物位计厂商销售

供应商:湖北物位帝智能装备有限公司

价格:面议

最小起订量:1/件

地址:湖北省武汉市洪山区青菱街道青菱大道青菱都市工业园联东U谷生态科技工业园

手机:17720591218

联系人:郭芬 (请说在中科商务网上看到)

产品编号:223649114

更新时间:2026-01-14

发布者IP:117.150.165.250

详细说明
产品参数
型号:多样
规格:不限
范围:全国
使用范围:工地用
产品优势
产品特点: 湖北开物位帝能装备有限公司主要生产雷达物位计、雷达液位计、雷达料位计、传感器、防爆物位开关、射频导纳料位计、静电容液位计、、超声波液位计、磁翻板液位计、浮球液位开关、接近开关、光电开关、声光报警器、防爆接线盒、防爆按钮开关、防爆磁性开关、跑偏开关、拉绳开关、皮带防打滑开关、皮带纵向防撕裂开关、声光报警器、温度变送器、压力变送器、差压开关热电偶热电阻等产品
服务特点:

  RJ-RD908雷达物位计厂商销售

  液体储罐的高精度监测方案

  相比超声波仪表,雷达料位计不受蒸汽、真空或压力(10MPa)影响。某原油储罐应用显示,26GHz雷达在ε=2.1介质中保持±3mm精度。两线制设计功耗<4mA,满足本安防爆要求(Ex ia IIC T6)。最新智能算法通过多点平均抑制液面波动,使动态误差降低80%。导波雷达(GWR)利用探杆穿透泡沫层,真实液位检出率>99%,特别适用于发酵罐等复杂工况。

  导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。

  同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。

  同轴电缆等效传输线原理图如图 2-1 所示。

  图 2-1 同轴电缆等效传输线原理图

  由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。

  这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。

  其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z

  , ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:

  1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回

  图 2-2 断路回波信号示意图

  3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。

  图 2-3 短路回波信号示意图

  当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。

  导波雷达测量系统原理:

  导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。

  导波雷达信号传播示意图如图2-4所示。

  在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。

  根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,***终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。

  根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。

  假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。

  假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:

  其中:c为电磁波在真空中的传播速度(3×10八立方米m/s)。

  Y为介质的相对介电常数,

  从为同轴电缆的相对磁导率(大多数液体其近似等于l}o

  我们可以得到:

  若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:

  L可以表示为液位因罐体高度为H,***后得到的液位高度为:

  h=H一L导波雷达测量系统示意图如图2-5所示。

  图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆***大测量范围为6.1 m,柔性杆为***大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的较低点定义为上参考点,用它来代表液位的满点(***高可测点)和20mA输出电流。下部死区的***高点则定义为下参考点,用它来代表液位的零点(较低可测。

  点)和4mA输出电流。在导波杆末端到罐底的距离为L。

  由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o

  一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。

  在罐体内实际显示的液位高度(即以下参考点作为零点)为:

  hD = h一L。一L, 这里L+L、是液位的整体迁移量。

  本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,***后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。

  是化工行业中的一种液位测量仪器,广泛应用于各行各业,受到了用户们的与喜爱。导波雷达又分为,杆式导波雷达液位计、缆式导波雷达液位计和同轴管式导波雷达液位计。今天小编想给大家介绍杆式导波雷达液位计,看看它有哪些特点。

  首先杆式导波雷达利用传输时间来测量介质的液位,它只需测量电磁波的传播时间,不需要对信号进行处理和识别,因此介质的变化对导波雷达液位计的测量性能没有太大影响。另外介质密度的变化对导波雷达液位计的测量没有影响,介质密度的变化主要影响淹没在介质中物体的浮力,但不影响电磁波在导波体中的传播。

  其次雾和对杆式导波雷达液位计的测量也是没有影响的,因为电磁波不会在空间中传播,因此雾不会影响信号衰减,泡沫也不会散射信号并损失能量。而且导波管上介质的沉积和污垢对液位测量影响也是不大的。

  一点也是很多用户选择杆式导波雷达液位计测量液位的重要原因,杆式导波雷达能耗低,液位计的导波体作为信号到液位的传输位置提供了一个有效的通道,信号的衰减保持在很小的程度,因此可以用来测量介电常数低的介质的液位。此外,由于导波雷达的能耗较低,采用回路电源代替单独的交流电源,节省了大量的安装成本。

  RJ-RD908雷达物位计厂商销售

  本文旨在通过实践来探讨电厂低压给水加热器上液位的测量,并解析了加热器结构及其采用各种不同液位测量仪表的历程和工况特点,论述了导波雷达液位计在低压给水加热器上的使用优势,藉此给电力行业热工人士提供一些有价值的参考。

  给水加热器的结构与功能

  给水加热器是一种利用汽轮机抽汽加热给水,以提高热效率的加热设备,是电厂回热系统的重要辅机之一。加热器的工作原理是利用汽轮机做过功的乏汽加热凝结水和给水,而不是直接将乏汽排入凝汽器,以充分利用乏汽的焓,降低冷源损失,同时减弱锅炉受热面的热应力。

  加热器按汽水传热方式的不同,可分为表面式和混合式。目前,在火力发电厂中除了除氧器采用混合式加热外,其余高低压加热器均采用表面式加热。按照水侧的布置方式和流动方向的不同,表面式加热器又分为立式和卧式。

  表面式给水加热器的特点,是加热工质(汽轮机的抽汽)与被加热工质(锅炉给水)相互不混合,通过管壁来传递热量。传热管内是给水,传热管外是蒸汽。蒸汽在加热器里放出热量并凝结成疏水,由疏水口排出。由于加热蒸汽通常都具有一定的过热度,为使给水温度达到所期望的值,同时加热面积尽可能的少,可设置一个过热蒸汽冷却段,以充分利用抽汽的过热度。蒸汽由汽相变为饱和水,同时放出汽化潜热的过程是在凝结段里完成的。凝结段是给水加热器的主要换热区段,管内给水大部分的焓升是由这一区段提供的。因此,具有凝结段的加热器是电厂用给水加热器的基本型式。

  加热器中液位测量的重要性

  加热蒸汽和被加热的水之间是通过金属表面来传递热量的。由于传热热阻的存在,给水不可能被加热到蒸汽压力下的饱和温度,不可避免地存在着一个端差。因此,给水端差(TTD = Terminal Temperature Difference)和疏水端差(DCA = Drain Cooler Approach temperature difference)是加热器的两个主要。给水端差和疏水端差的设置,直接影响到机组的率和运行的性。给水端差又称为上端差,是加压器蒸汽压力下的饱和温度与出口给水温度之差。疏水端差又称下端差,是离开加热器汽侧的疏水温度与进入水侧的给水温度之差。

  图1  卧式表面式给水加热器结构实物

  合理的给水端差的设置,能够有效提高热交换效率,是成本控制及盈利能力的重要组成部分。在实际运行中,给水端差增大的原因有:加热器的抽汽压力和抽汽量不稳定;加热器受热面结垢使传热恶化,增大了传热管内外温差;加热器内积聚了空气,不凝结的空气附在传热管表面形成空气层,妨碍了蒸汽的凝结放热,增大了传热热阻;凝结水或给水的部分或不经过加热器,而是从加热器旁路通过;凝结水位过高,淹没了一部分传热管,使传热面积减少。而给水端差过小,纵然可以提高热交换效率,但加热器长期处于过热状态,会大缩短使用寿命。由此可见,在日常操作中,维持合理的加热器凝结水位高度,从而找到热交换效率和设备寿命之间的平衡点,成为热工控制的首要任务。

  加热器中液位测量的发展历程

  给水加热器中存在高温、高压及大量蒸汽,恶劣条件使之成为测量的难点。给水加热器的水位检测历经了几个发展阶段,从初的磁翻板液位计、浮筒液位计、直到今天比较常用的差压变送器和导波雷达液位计。

  磁翻板液位计又称就地水位计,是为传统的一种水位测量方式,至今仍然是加热器的标准配置。磁翻板液位计利用浮力原理,根据加热器的设计温度、压力及水的密度,制造出满足工况条件的浮子。浮子装在和加热器相连的筒体中,筒体中的水位和加热器中的水位等高,而筒体内浮子漂浮在水面上,即代表水位的高度。浮子内的永磁铁通过磁耦合作用引起筒体外的小磁板翻转,通过小磁板两面颜的不同,来就地读取加热器中的水位高度。磁翻板液位计是一种稳定的测量技术,但它存在两大缺陷。一是测量精度不高。因为加热器中的温度和压力的变化,凝结水的密度也发生变化,根据阿基米德浮力定律f浮=ρgV,当凝结水密度变化时,浮子浸没在水中的体积也发生变化,因此浮子淹没高度的变化会影响到测量精度。二是就地水位计在初的时候没有远传信号。

  浮筒液位计是上世纪80年代至本世纪初常用的加热器水位测量方式。因为浮筒液位计集成有信号转换器,所以能够提供远传信号。但是浮筒液位计也是基于浮力的原理,因此同样面临着测量精度差的问题。此外,浮筒液位计多数采用扭力管式测量原理,表头笨重且需要周期性的标定,给使用和维护带来了诸多不便。

  图2  导波雷达液位计工作原理

  随着差压变送器技术的发展和产品性价比的提升,差压变送器配合平衡容器成为本世纪以来较为常用的加热器水位测量方式。但无论是采用双室平衡容器,还是采用单室平衡容器,对于测点位置的选取和安装都有较高的要求。因为,低加汽测可能工作在负压工况下,所以测量值波动大,影响到生产人员的正确操。此外,差压变送器的测量原理是:ΔP=ρgh,为达到地测量,需要对密度、温度及压力进行补偿。

  导波雷达液位计采用的是时域反射原理(TDR原理,Time Domain Reflectometry)。导波雷达的工作原理,是由表头高频脉冲发生器产生电磁脉冲波信号,该信号沿着导波杆(探杆)向下传送,当遇到比此前传导介质(如空气或蒸汽)介电常数大的液体表面时产生反射信号,用超高速计时电路测量出脉冲波信号从发射到接收的传导时间。传导时间与电磁脉冲波速度乘积的一半,即代表被测介质表面到导波雷达液位计过程连接处的距离;通过给定的容器高度减去距离,计算得出液位的高度,从而达到对液位的测量。

  导波雷达液位计的测量原理及优点

  时域反射理论模型早在1939年就已建立,初用于电信业查找电缆断点。上世纪90年代中后期,部分液位计厂家致力于将TDR技术应用于工业仪表,称之为导波雷达液位计。导波雷达液位计问世后,随即成为物位测量的一大利器。导波雷达液位计的测量结果和被测介质的温度、压力、密度、粘度、电导率和介电常数无关,可以用于测量液体、浆料和固体,也可以测出物位或某些工况下的液体界面。因此,当导波雷达液位计满足设计温度、压力、量程、精度、材质及安装位置的要求时,是一种理想的物位测量仪表,几乎可以取代大多数物位计。当然,导波雷达液位计也同样面临着一些使用的限性,如其典型精度为±3mm、对温度和压力耐受的限、当介质粘度高时在探杆上形成挂料、固体介质容易磨损并拉断探杆,以及容器内的搅拌影响探杆的安装等。

  做为一种探杆和被测介质相接触的接触式物位测量仪表,导波雷达液位计的选型重点集中于探杆形式。为此,各导波雷达液位计厂家研发生产出不同的探杆形式,以满足各种工况的要求。如笔者所使用过的美国Magnetrol品牌的导波雷达液位计,就有多达22种探杆形式可供选择。

  图3  单杆探杆信号轨迹图、通州探杆信号轨迹图、同轴探杆实物图、通州探杆实物剖面图

  那么,如何选用合适的探杆形式呢?首先,需要考虑探杆对温度和压力的耐受。其次,需要考虑电磁脉冲信号在探杆上传播的轨迹。

  单式探杆(单杆、单缆)上信号轨迹呈逐步发散的状态。在信号的轨迹范围内,可能会产生干扰信号影响到液位的测量。典型的干扰信号有安装管嘴,以及容器内的焊缝、焊渣和结构件等。同轴探杆的信号则集中在同轴探杆内。同轴探杆的结构是中间有一根实心金属杆(通常直径为8mm),电磁脉冲信号在金属杆上传播;其外侧是一根金属套管(通常直径为22mm),金属套管作为金属杆的屏蔽层,起到屏蔽外部的干扰信号及集中信号的作用,以提高信号的灵敏度,便于测量介电常数较低的介质。因此,采用同轴探杆可以不用考虑安装位置及容器内结构对测量带来的影响,是理想的一种探杆形式。同轴探杆的限在于,其量程受限,通常为6m左右,以及高粘度介质所形成的“搭桥”现象。

  那么是不是说使用导波雷达液位计测量低压加热器液位,只需考虑到以上两点就了呢?实际上,还需要结合电厂低压加热器实际工况中存在大量蒸汽的特点。一是要考虑蒸汽的侵蚀作用对于探杆和表头之间密封部分的材质选择和制作工艺的考验。见图3红圆圈部分。依据笔者经验,选择应用业绩多、历经实践考验的品牌是产品的有效保障。二是需要考虑蒸汽工况下,电磁脉冲信号的传播在蒸汽中被衰减的情况。通常,导波雷达的测量原理可用以下公式来表示:

  L=D – C0.t/2

  L=液位高度

  D=容器高度

  C0=真空中的光速

  t=发射信号和反射信号的时间间隔

  在蒸气工况中,实际的液位以 L真来表示,实际的信号传播速度用C真来表示;仪表测量出的液位以L测来表示,那么:

  L真=D – C真.t/2

  L测=D – C0.t/2

  因为C真L测。依据导波雷达液位测量值来控制凝结水的高度,所造成的实际影响是凝结水位过高,致使低压加热器内部分传热管被淹没在凝结水下,热交换效率下降,给水端差增大。

  图4  7×S蒸汽探杆结构剖面图

  通过实际的观察数据和相关的文献资料信息,在低压加热器的工况条件下,C真和C0之间的差异在2%~5%之间。因为C真受到蒸汽温度、压力的影响而不断变化,所以仅从改变仪表系数的方面来进行C真的修正,还是不能很好满足对测量准确度的要求。

  对于C真进行实时的补偿,是导波雷达在蒸汽工况下能完成准确测量的先决条件。笔者所使用的Mangetrol导波雷达液位计采用了专利的蒸汽探杆,用于实时的C真补偿,其补偿的工作原理如下:

  在蒸气探杆中,距离表头下方125mm处安装有一个蒸汽目标(Steam Target),表头每秒会发送一个询问信号,该询问信号到蒸汽目标后被发射回表头的时间t问询被测量。此时,电磁脉冲信号在当前工况下的速度C真可以用以下公式准确计算出来:

  C真=d/t问询,其中,d=125mm

  获得C真后,导波雷达将以此值来进行真实液位值的计算,从而达到实时补偿的目的。

  小结

  综上所述,Magnetrol专利的蒸汽探杆,集成了同轴式、良好的蒸汽隔密封及实时蒸汽补偿的优势。同时,Magnetrol致力于同轴探杆的大规模推广,具有同轴探杆生产的规模优势,给电力行业用户带来了高性价比的产品。此外,Magnetrol专利的AURORA系列液位计,将磁翻板和导波雷达液位计集成为一体,提供了重要应用场合的现场和远传测量,减少了过程接口数量,避免了潜在泄露点,提高了使用维护的便利性。

  罗斯蒙特导波雷达物位计 3302液位变送器用于液位测量和界面测量,为液体应用提供了具有成本效益的解决方案。工作温度:-40 至 150°C(-40 至302°F),工作压力:全真空至 580 psi(全真空至 40 bar)。ROSEMOUNT物位计 3302可配备多种探头,以适应大多数应用,如硬单线、分段单线、软单线、软双线等。通过发射脉冲和反射脉冲之间的时间差被转换成距离,计算总电平或界面电平。ROSEMOUNTVeriCase 是 3308 和 5300 罗斯蒙特液位变送器的移动验工具,具有 HART 和 Modbus通信。

  ROSEMOUNT雷达物位计 TM 3300系列产品,功能多样,易于使用,可用于大多数储罐的液位监测应用,使用简单。带非导电表面和轻质金属的导波杆:可从变送器型号代码(例如,330xxxxx1xxxxxxxx)的第九个字符位置找到结构材料代码。不允许在有粉尘的易爆环境中使用含镁或锆超过7.5%的导波杆或法兰。除了更换整个变送器头或导波杆组件外,换用未经核准的部件或进行维修的行为都可能危害性,不得进行。罗斯蒙特液位计3300 系列是一种基于时域反射(TDR)原理的智能双线连续电平发射机。

  ROSEMOUNT导波雷达物位计5301HA1S1V3AM0225HBNAM1C1

  罗斯蒙特超声波液位计4ST

  罗斯蒙特差压变送器3051TG4A2B21AB4K5M5

  罗斯蒙特雷达物位计3301HA1S1V3AM0345RA2AM1C1

  ROSEMOUNT差压变送器3051TG2A2B21AB4E5M5

  ROSEMOUNT导波雷达液位计5301HA1H1N3AM0340AANAM1C1

  罗斯蒙特物位计3301HA1S1V3AM0370RAE1M1C1

  罗斯蒙特压力变送器3051TA2A2B21AB4M5

  ROSEMOUNT物位计5301HA1H1N3AM00080AANAC1

  ROSEMOUNT雷达液位计5301HA1S1E5BM01900BBE1M1C1

  罗斯蒙特差压变送器3051TG3A2B21AB4K5M5

  ROSEMOUNT液位计5900SPF2FI5R2AG1H8SPV8Z0ST

  罗斯蒙特压力变送器3051TG1A2B21AB4K5M5

  罗斯蒙特雷达液位计5900SPF14

  罗斯蒙特物位计590A4AVQ4

  ROSEMOUNT超声波液位计3102HA1FRCNAST

  ROSEMOUNT压力变送器3051TA2A2B21AB4M5

  ROSEMOUNT雷达物位计5900SPSF4

  罗斯蒙特温度变送器644H5J6M5

  ROSEMOUNT液位计5301HA1H1N4AM00190IBE1C1

  罗斯蒙特导波雷达液位计5301HA1H1N3AM0140ADNAM1C1

  ROSEMOUNT温度变送器4

  ROSEMOUNT雷达液位计5301HA1H1N3AM0230NAM1C1

  罗斯蒙特导波雷达液位计3301HA14

  罗斯蒙特温度变送器644HAE5J5M5

  ROSEMOUNT差压变送器3051CD3A22A1AS2B4E8M5HR5

  ROSEMOUNT导波雷达液位计5301FAMSS1V4BE01011CA

  ROSEMOUNT压力变送器3051TA1A2B21AB4K5M5

  罗斯蒙特雷达液位计5301HA1S4Q8C1

  罗斯蒙特导波雷达物位计5301HA1S1V3AM0125AANAM1C1

  ROSEMOUNT导波雷达物位计5301HA1H1N3AM0230NAM1C1

  罗斯蒙特液位计3301HA1S1V4AM0180BANAM1C1

  罗斯蒙特雷达物位计54

  本公司主要代理经销欧洲、美国等厂家的工控机电设备、编码器、泵阀、液位计、传感器、流量计、变送器、分析仪、PLC、温度计等各种工控自动化产品和仪器仪表。公司以提供的服务为宗旨,与国内各企业建立广泛合作伙伴关系。

  美国ROSEMOUNT超声波液位计,罗斯蒙特超声波液位计

  美国ROSEMOUNT压力变送器,罗斯蒙特压力变送器

  美国ROSEMOUNT流量计,罗斯蒙特流量计

  美国ROSEMOUNT变送器,罗斯蒙特变送器

  美国ROSEMOUNT电磁流量计,罗斯蒙特电磁流量计

  美国ROSEMOUNT液位计,罗斯蒙特液位计

  美国ROSEMOUNT差压变送器,罗斯蒙特差压变送器

  美国ROSEMOUNT物位计,罗斯蒙特物位计

  美国ROSEMOUNT雷达液位计,罗斯蒙特雷达液位计

  美国ROSEMOUNT手操器,罗斯蒙特手操器

  美国ROSEMOUNT雷达物位计,罗斯蒙特雷达物位计

  美国ROSEMOUNT导波雷达液位计,罗斯蒙特导波雷达液位计

  美国ROSEMOUNT温度传感器,罗斯蒙特温度传感器

  美国ROSEMOUNT温度变送器,罗斯蒙特温度变送器

  美国ROSEMOUNT涡街流量计,罗斯蒙特涡街流量计

  美国EMERSON流量计,艾默生流量计

  ROSEMOUNT导波雷达物位计是由导波杆向下引导微波脉冲到达物料表面后,部分信号被反射回来,通过测量信号发射到接收的时间差得出物位高度。通过天线发射并接收能量少且短的微波脉冲信号,信号以光速运行,这种测量方式可以在工业频率波段内正常使用,可以安装在各种金属、非金属或者管道内,可测量物体十分广泛,如各类液体、浆液原料以及颗粒类物料,皆可进行非接触式的连续性测量,现场环境恶劣,工况相对复杂,存在各种形式的干扰,造成虚假回波的情况下,导波雷达物位计依旧可以准确的分析出物位的正确回波。在测量时应注意,理论上当发射的微波脉冲测量返回后到达天线的位置即可,综合考虑现场环境,被测物料是否会腐蚀或者粘附天线周围造成影响。

  罗斯蒙特导波雷达物位计。通过标定只得到物位与时间之间关系的若干点数据,需要根据这些数据拟合或插值得到物位与时间之间的关系表达式才能实现物位的测量。针对导波雷达物位计测量不同相对介电常数的物料,基于MSP430F5418 单片机信号处理系统,采用二阶 Lagrange 插值法对真实回波的Z大峰值点进行修正,并运用多项式拟合或者一阶 Lagrange 插值对标定数据进行处理。水位测量实验结果表明,对 72.4cm长的导波杆,测量范围从 30~57 cm 拓宽到 20~72 cm,测量误差由 1.0 cm 减小到 0.5cm。喷漆挡板模拟物位界面实验结果表明,对 250cm 长的导波杆,测量范围可达从导波杆法兰下表面 20 cm位置处到导波杆末端,减小了测量盲区,且测量误差不大于 0.5 cm。

  VILTERA42044CX4M

  WIELANDZ5.540.0325.0

  WIELAND91.222.2004.9

  WIELAND8113 BFK / 12 TOP K

  WIELANDBAS GAESNLS 6 4,0 50

  VILTER25269A

  WIELAND25.648.4353.0

  WIELAND96.231.2033.1

  WEIDMUELLERCLI C 1-12 GE/SW 0240-0259 2-PAG

  WIELANDZ5.574.0153.0

  WIELANDST18/3S C1  F  GN

  WIELANDGST18I4KSBS 15H X11WS

  WIELANDU2.257.2004.1

  WEIDMUELLERDEK 5 FS 2, 4, 6...100

  WIELANDU2.238.3100.1

  WEIDMUELLERPOWERSTRIPPER 6,0

  WIELAND8291 E /  4 /  8 Z OB

  WIELAND05.545.2302.8

  WIELANDGST18I4KSBS 15  X15SW

  WIELAND9704 A /VG B

  WIELAND96.053.6253.1

  WEIDMUELLERKDSU M50 BN O NI 2 G50S

  WIELANDR1.643.4150.0

  WEIDMUELLERLMZFL 5/19/135 3.5SW

  WIELAND83.217.2009.2

  WIELANDST 72.7 /16 REVZ

  WIELAND25.522.4253.0

  WIELAND92.934.0753.0

  WEIDMUELLERDIE SET TS35x7.5 (DS3575)

  WEIDMUELLERMPC 17/17/10 trsp

  VILTER2466R

  WEIDMUELLERBLZ 5.08/10/180F SN OR BX

  WIELAND8213 B /  2 S OB

  WEIDMUELLERBLZF 5.08/16/180F SN OR BX

  WIELANDGST18I4KSB- 15H  20GR01

  WEIDMUELLERCLI C 3-9 SDR SG

  美国K-TEK公司是世界上***的过程物位仪表制造公司之一。美国K-TEK公司成立于1975年。美国K-TEK公司产品遍布世界各个角落。美国K-TEK公司在多个国家设有分公司,凭借性的销售网络,美国K-TEK公司可向130多个国家提供K-TEK导波雷达液位变送器,K-TEK液位计,K-TEK电子开关,K-TEK现场控制器,K-TEK法兰,K-TEK浮筒配件。

  产品有:美国K-TEK导波雷达液位变送器丨

  K-TEK液位计、K-TEK电子开关,K-TEK现场控制器,K-TEK法兰,K-TEK浮筒配件。The K - TEK guided wave radar liquid level transmitter, K - TEK level gauge, K - TEK electronic switch, K - TEK site controller, K - TEK special flange, K - TEK buoy accessories.K-TEK 型号,K-TEK 品牌,K-TEK 厂家,K-TEK 价格,K-TEK 代理,K-TEK 分销,K-TEK 现货,K-TEK 资料。K-TEK model, K-TEK brand, K-TEK manufacturer, K-TEK price, K-TEK agent, K-TEK distribution, K-TEK spot, K-TEK data.参考:

  /?380.html

  WIELANDDec-01

  WIELAND96.232.1036.7

  WIELAND25.343.0353.0

  WIELANDREVOS MOT W 8X1,5 - 30

  WEIDMUELLERLSF-SMT 5.00/12/135 3.5SN BK TU

  WIELANDZ7.212.1327.0

  WEIDMUELLERBLZP 5.00/18/270F SN BK BX

  WIELAND25.179.0753.0

  WIELANDGST15I3KSBA 15HW 60SW

  WIELANDIVBS WK4 E -  6

  WEIDMUELLERWS 10/5 MC M SDR

  WIELANDGST15I2KSBS 15HW 30SW

  WIELANDU2.207.1100.1

  WIELAND25.500.2053.0

  WEIDMUELLERLM 5.00/11/90 3.5SN OR BX

  WEIDMUELLERLL2N 9.52/24/90 5.0SN GY BX

  WIELANDST18/4 S WS

  WEIDMUELLERKDKS1/EN LD 230VAC

  WIELANDRST20I3K1-S 25   13SW

  WEIDMUELLERBLF 5.00HC/03/90LH SN OR BX

  WIELAND25.380.3553.0

  WEIDMUELLERBLZP 5.08/04/180LH SN OR BX

  WIELANDBAS GOT GD 10 M25 69 A1

  WIELANDZ5.532.4125.0

  WIELAND70.320.1628.9

  WIELAND8105FUE/ 3C13 VR SWG GW

  WEIDMUELLERVSPC BASE 1CL FG

  WIELAND70.377.4835.1

  WIELAND8513 SEGN/15 W THR OB

  WIELAND8313 S /  8 G OB

  WIELAND8113 S / 16 WF OB

  WIELAND25.133.0553.0

  VILTER2858G

  WEIDMUELLERESG 9/6 MC NE WS

  WIELAND96.021.0453.0

  WIELAND92.232.2003.3

  由发送器将脉冲发生器生成的一串脉冲信号通过天线发出,经液面反射后由接收器接收,再将信号传给计时器,从计时器得到脉冲的往返时间t。用这种方法测量的大难点在于地测量时间t,这是由于雷达波的传播速度快,还有对液位测量精度的要求造成的。通过公式(1)可知,液位变化1mm,微波运行时间变化6ps。微波脉冲法通过采样处理将测量时间延伸至us级,由此来测量微波运行时间。

  微波脉冲法制造成本低,精度相对较低,多应用于工业级雷达液位计。

  连续调频法采用线形调制的高频信号提高所发射信号的频率。由于在信号传播中延迟了时间,改变了信号的频率。返回信号的频率低于发出信号的频率,一般相差几kHz。发射波与接收波送入混频器测出频率差△f,△f与被测距离d成线性关系,这样就将雷达波的往返t转换成了可测量的频率信号△f。其基本原理如图3所示。

  (雷达液位计导波雷达液位计)

  不收罐壁形状影响,尤其适合狭小空间测量

  不收液体密度、固体疏松程度的影响

  介电常数测量能力er≥1.4

  超大量程30米,精度0.1级,带现场显示模块

  二线制,24vdc,回路供电

  4-20ma/hart输出,信号可实现远距离传输

  空高-料高通过设置可以自由切换

  软件实现储罐界面集中显示,轻松完成现场调试和检测

  1.狭小空间液位测量

  2.高粉尘储罐料位测量

  3.内浮顶油料库液位测量

  4.带搅拌反应釜液位测量

  5.分层界面液位测量

  1.探头远离出料口和进料口,在整个量程范围内不碰壁

  2.仪表应安装在料仓直径的1/4处

  3.容器底部是锥形的,传感器可以安装罐顶

  (雷达液位计导波雷达液位计)

  ±0.1%量程上限/12个月

  (雷达液位计导波雷达液位计)

  2、可以在真空中测量可以测量介质常数>1.8的介质,测量范围可达35m;

  3、供电和输出信号通过一根两芯线缆(回路电路),采用4…20mA输出或数字型信号输出;

  4、非接触式测量安装方便采用其稳定的材料牢固耐用,分辨率可达1mm;

  5、不受噪音、蒸汽、粉尘、真空等工况影响;

  6、不受介质密度和温度的变化,过程压力可达40bar,介质温度可达300℃;

  7、安装方式有多种可以选择:顶部安装、侧面安装、旁通管安装、导波管安装;

  8、调试可多种方式选择:采用编程模块调试(相当于一个分析处理仪表)、SOFT软件调试、HART手持编程器调试,调试起来方便快捷。

  (雷达液位计导波雷达液位计)

  13、当储罐制造材料的介电常数小于7,如纤维强化玻璃、聚乙烯、聚丙烯或无铅玻璃等,且壁厚适中时可安装于储罐外部。

  14、若介质储罐为球形容器时,应采用导波管或旁通管方式安装,这样可以消除由容器形状所带来的多重回波的干扰,提高信噪比。

  15、在测量介电常数较小的介质(如液化气、汽油,柴油、变压器油的等)时,因这些介质会对微波产生相对较大的衰减,为提高反射能量以确保测量精度,也应该用导波管方式安装。

  16、选择好安装位置后,安装椎体天线的安装垂直偏差小于±1度。

  17、安装时注意不要碰坏天线

  18、安装在室外时,要给液位变送器安装保护盖,以防日照和雨淋。

  (雷达液位计导波雷达液位计)

  下列属于阴性植物的是()["桂花","梅花","秋海棠","都不是"]

  2013年4月8日,英国前首相撒切尔夫人去世,她1979年上任后,在经济上推行新自由主义,促使英国走向市场经济。下列对新自由主义的看法正确的是()。    ①坚持市场信息和竞争市场假设    ②主张加强国家金融监管    ③强调社会保障和社会公平    ④认为私有制是市场经济的唯一基础["①②","①④","②③","②④"]

  使用伺服液位计测量储罐的液位,若罐高设为16米,上停止位设为12米,bottom设为300mm,当将储罐中的料清空后,液位计显示的值为多少()["0","300mm","大于0,但小于300mm","大于300mm"]

  ()山谷风是指在山区,山坡和周围空气受热不同而形成的,以一天为周期随昼夜交替而改变风向的风。["焚风","季风","山谷风","海陆风"]

  关于鼻用激素首过代谢率、生物利用度和性的理念正确的是()。["首过代谢率、生物利用度与性不等同","物性要经过动物试验、临床研究和大量实际应用来验","临床研究和大量实际应用表明,雷诺考特的不良反应发生率与安慰剂相似,长期使用未见全身副作用","都对"]

  Saab雷达液位计导波管下面的反射板距罐底高度为300mm,因此,当显示液位值10米时,罐内实际液位为()。

  了解更多关于:高频智能雷达液位计,雷达液位计cad符号,雷达液位计可以测量泡沫,雷达液位计排名,雷达液位计死去,脉冲式雷达液位计,雷达液位计导播管,超声波液位计与雷达液位计无别,rosemount雷达液位计5400,深圳雷达液位计,雷达液位计 几线,雷达液位计防挂水,雷达智能液位计,卫生型雷达液位计,雷达液位计卡死,雷达液位计高多少温度,爱默生雷达液位计,科隆雷达液位计代理商,雷达 液位计 英语,罗斯蒙特雷达式液位计