MIK-RD701雷达物位计质量好的
液体储罐的高精度监测方案
相比超声波仪表,雷达料位计不受蒸汽、真空或压力(10MPa)影响。某原油储罐应用显示,26GHz雷达在ε=2.1介质中保持±3mm精度。两线制设计功耗<4mA,满足本安防爆要求(Ex ia IIC T6)。最新智能算法通过多点平均抑制液面波动,使动态误差降低80%。导波雷达(GWR)利用探杆穿透泡沫层,真实液位检出率>99%,特别适用于发酵罐等复杂工况。
在如今工业发展四处蔓延遍布到很多城市,许多城市都在慢慢变成工业型城市,为了工作效率大都换成了大家伙的机器,街上真的随处可见都是大仪表,现在的工业仪器许多都做的笨重,只讲究实用性而不考究外观,而今天我带来的一个工业仪器外观比较可爱,小小一个仪器作用确是很多大仪器所不能及的。
如下图。
这个长得很像那个一说谎话就变长鼻子的匹诺曹,它有一顶绿的帽子,尖尖的鼻子,深邃的黑眼睛,别看它小,它应用的行业场景很多,水泥、电力、冶金、石油、化工、煤炭、食品等行业。适用于液体、浆液、带蒸汽液体以及低介电常数介质、带搅拌的储罐和过程容器以及固体料仓。
它应用这么多,那么它的原理到底是什么呢?
雷达液位计啊,它是通过一个可以发射能量波(一般为脉冲信号)的装置发射能量波,能量波在波导管中传输,能量波遇到障碍物反射,反射的能量波由波导管传输至接收装置,再由接收装置接收反射信号。
雷达液位计对化工机电有什么用处呢?这就得看它的特点了。
雷达液位计具有以下六点特点:
1、通用性:可测量液位及料位,可满足不同温度、压力、介质的测量要求。
2、免维护:测量过程无可动部件,不存在机械部件损坏问题,不需要过多维护。
3、准确:测量多样化,使测量准确,测量不受环境变化影响,稳定性。
4、不受真空、烟尘、蒸汽、惰雷达液位计是一种微波物位计,它是微波(雷达)定位技术的一种运用。所以能在化工行业常被使用到。
好啦,关于这个可爱的“小人”身上藏了这么多好处就讲到这里啦,导波雷达液位计对工业行业的这些好处,你get了吗?
Siemens导波雷达液位计SITRANS LG200 >> 是一种用于液体和固体的中短量程物位,物位/界面和体积测量的导波雷达变送器。它不受过程条件改变,高温和高压,蒸汽的影响。
西门子导波雷达变送器SITRANS LG200 优点
表头三个按键可实现设置;
精度高达2.5毫米。
测量包括泡沫在内的恶劣应用的物位和界面;
同轴管,单或双杆式和缆式探头适用大多数应用;
可用于高达430 barG的高压和427度的高温环境。
应用
SITRANS LG200 可以测量物位,体积和界面。主要针对中短量程应用,LG200 提供同轴,单或双杆式探头以及单或双缆式探头,量程可达22.5米。
SITRANS LG200 可在一些恶劣条件下进行稳定测量,比如腐蚀性蒸气,泡沫,饱和蒸汽,高黏度,填充/排空速度,低液位和变化的介电常数和密度。
西门子导波雷达变送器 SITRANS LG200 常规型号:
7ML13001AA110A00 7ML1300-1AA11-0A00
7ML13001AA110B00 7ML1300-1AA11-0B00
7ML13001AA111A00 7ML1300-1AA11-1A00
7ML13001AA111B00 7ML1300-1AA11-1B00
7ML13001AA120A00 7ML1300-1AA12-0A00
7ML13001AA120B00 7ML1300-1AA12-0B00
7ML13001AA121A00 7ML1300-1AA12-1A00
7ML13001AA121B00 7ML1300-1AA12-1B00
7ML13001AB110A00 7ML1300-1AB11-0A00
7ML13001AB110B00 7ML1300-1AB11-0B00
7ML13001AB111A00 7ML1300-1AB11-1A00
7ML13001AB111B00 7ML1300-1AB11-1B00
7ML13001AB120A00 7ML1300-1AB12-0A00
7ML13001AB120B00 7ML1300-1AB12-0B00
7ML13001AB121A00 7ML1300-1AB12-1A00
7ML13001AB121B00 7ML1300-1AB12-1B00
针对各种转矩管应用 SITRANS LG200 可更换式探头可以被安装在现有的旁通管以优化应用。
主要应用:电力、石油、化工、 采矿、钢铁、水泥、食品 、冶金、造纸、医、 纺织、、水利等领域。
MIK-RD701雷达物位计质量好的
罗斯蒙特 3300 在众多应用领域中,提供且的液位。 凭借高灵敏度和信号处理性能的导波雷达技术,罗斯蒙特 3300 系列通过一个变送器便能同时进行液位和界面两种测量。 3300 系列现推出一系列型导波杆,设计用于即使在恶劣的过程环境下也能进行测量。 二线制连接确保了安装简便经济。 其特点包括:
高温和高压导波杆 用于要求高的液位测量领域。
多样的导波杆几乎可满足应用领域的需求。
多变量、环路供电的液位和界面变送器可减少储罐穿孔数目,并节省安装成本。
直接液位测量无需对温度、压力、密度、介电性能或导电性能的变化进行补偿。
简便易用的雷达组态工具使得设置简单,并通过波形图和记录工具提供诊断。
几乎不受粉尘、蒸汽、干扰物的影响。
坚固的模块化结构降低了运行成本,提高了性。
易于集成于现有设备中。
外形尺寸图
欣 生MT5000导波管雷达液位变送器 导波雷达物位计0.6~61米 0.075%4~20mA(mA) DC24V
MT5000导波管雷达液位变送器
概述
MT5000导波管雷达液位变送器采用的雷达技术,雷达信号沿着导波管传输,可消除虚假回波,减少信号损失,仪表具有不受大气情况和介质密度变化的影响,测量高,测量范围大,多种过程连接方式,安装使用方便等特点。仪表输出4~20mA标准电流信号,可选HART协议或Honeywell DE协议进行通讯。
主要技术参数
测量范围:0.6~30.5m;0.6~61m
度:&plun;5mm
分 辨 率:&plun;1.6mm
显示单位:在现场可选择毫米mm、厘米cm、米m或%等工程单位
工作电源:13.5-36VDC,两线制
介质介电常数:单杆:小1.3min.
双杆:小1.7min.
介质粘度:1500cp
材质:壳体:铸铝
传感器:316L 316L SS,
过程连接:单杆式、单缆式:DN25,PN4.0
双杆式、双缆式:DN50,PN4.0
旁通管型:DN25,PN4.0 法兰标准HG20592-77,凸面法兰,其它法兰标准 如、HGJ、GB、ANSI等可注明。
高温型:DN65,PN4.0
护管型:DN50,PN4.0
卫生型:卫生快装卡箍DN50
认 :FM,CSA,CENELEC
隔爆型:ExdII6
本安型:ExiaIIBT6
护等级:IP67
探杆的测量盲区
型号规格
外形和安装尺寸
导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。
同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。
同轴电缆等效传输线原理图如图 2-1 所示。
图 2-1 同轴电缆等效传输线原理图
由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。
这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。
其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z
, ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:
1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回
图 2-2 断路回波信号示意图
3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。
图 2-3 短路回波信号示意图
当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。
导波雷达测量系统原理:
导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。
导波雷达信号传播示意图如图2-4所示。
在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。
根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,***终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。
根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。
假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。
假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:
其中:c为电磁波在真空中的传播速度(3×10八立方米m/s)。
Y为介质的相对介电常数,
从为同轴电缆的相对磁导率(大多数液体其近似等于l}o
我们可以得到:
若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:
L可以表示为液位因罐体高度为H,***后得到的液位高度为:
h=H一L导波雷达测量系统示意图如图2-5所示。
图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆***大测量范围为6.1 m,柔性杆为***大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的较低点定义为上参考点,用它来代表液位的满点(***高可测点)和20mA输出电流。下部死区的***高点则定义为下参考点,用它来代表液位的零点(较低可测。
点)和4mA输出电流。在导波杆末端到罐底的距离为L。
由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o
一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。
在罐体内实际显示的液位高度(即以下参考点作为零点)为:
hD = h一L。一L, 这里L+L、是液位的整体迁移量。
本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,***后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。
随着许多新型液位计产品和技术的出现,原有的液位计检定装置普遍存在着准确度不高,安装方法不方便等问题,为此我公司经过大量调研液位计的工况环境、液位计产品的现状,以及现有的检定条件、检定方法,并综合国内市场上对液位计计量设备的要求,恒升伟业研制了一套液位计检定装置。
测量范围:可根据客户需求定制,量程可做到4000 mm(实验室层高至少为实测高度+600mm)。建议常用量程:(0-2000)mm、(0-2500)mm、(0-3500)mm等;
控制误差:±0.05 mm;±0.1 mm;±0.2 mm;±0.5 mm;±1 mm; 标准器准确度:光栅位移运动平台 ±0.02/0.05/0.1mm,±0.1mm ,钢直尺/钢卷尺±(0.1+0.1L)mm;
工作介质:水; 数字信号采集接口:RS232/RS485; 模拟信号采集类型:4~20mA、0~5V,精度:±0.02%、±0.05%; 位移控制精度:0.01/0.1mm;分辨率:0.01/0.1/1mm; 测量接口:侧装系列DN 20~DN 100(标准DN50,其它接口由用户提出,另外定制),顶装系列DN 50~DN 150(标准DN150 ,其他接口由用户提出,另外定制)。 控制速度:2米/10min 量程满足《JJG971-2019液位计检定规程》中的准确度等级,并满足液位计溯源要求。
1、主体部分:
主体部分采用不锈钢,对接液部分和密封部分采取防腐处理,外壳平光处理,
表面平光处理,有效刮花及油污残留主体部分主要由测量筒体,水箱,柜体等部件组成
8、软件部分
可实现预设参数自动测量
实现测量数据的自动采集、分析、计算与显示
可生成与打印记录、报告
能获知当前测量工作状态信息
液位计/变送器(磁翻板/磁致伸缩/电容式、投入式、射频/振动/音叉/超声波/导波雷达、钢带/玻璃管/玻璃板/外贴/视窗式、浮标/浮球/浮筒/浮子式等)