PWRD81-EAADF2DFBFP2BTGMV雷达液位计便宜的

名称:PWRD81-EAADF2DFBFP2BTGMV雷达液位计便宜的

供应商:湖北物位帝智能装备有限公司

价格:面议

最小起订量:1/件

地址:湖北省武汉市洪山区青菱街道青菱大道青菱都市工业园联东U谷生态科技工业园

手机:17720591218

联系人:郭芬 (请说在中科商务网上看到)

产品编号:222846451

更新时间:2025-11-01

发布者IP:117.150.165.250

详细说明
产品参数
型号:多样
是否可定制:是
规格:不限
防腐性:好
范围:全国
产品优势
产品特点: 湖北开物位帝能装备有限公司主要生产雷达物位计、雷达液位计、雷达料位计、传感器、防爆物位开关、射频导纳料位计、静电容液位计、、超声波液位计、磁翻板液位计、浮球液位开关、接近开关、光电开关、声光报警器、防爆接线盒、防爆按钮开关、防爆磁性开关、跑偏开关、拉绳开关、皮带防打滑开关、皮带纵向防撕裂开关、声光报警器、温度变送器、压力变送器、差压开关热电偶热电阻等产品
服务特点:

  PWRD81-EAADF2DFBFP2BTGMV雷达液位计便宜的

  雷达物位传感器的测量原理

  雷达物位传感器基于时域反射(TDR)原理,通过发射26GHz或80GHz高频电磁波并计算回波时间差实现物位测量。电磁波在空气中传播速度接近光速(3×10⁸m/s),1ns的时间分辨率对应15cm的测量精度。某石化储罐实测显示,80GHz传感器对ε=1.8的柴油测量误差仅±2mm,比超声波传感器精度提高5倍。最新相位干涉技术可识别0.1°的相位变化,将分辨率提升至0.1mm级。传感器通常采用FFT算法处理回波信号,能在-40~200℃环境稳定工作。

  文章结合导波雷达液位计在环己烷罐液位测量应用及故障处理实例,总结了导波雷达液位计维护经验工仪表供参考和借鉴。

  设备简介及工艺生产状况

  1、设备简介

  昌晖导波雷达液位计由雷达变送器和导波探杆两部分构成,为两线制仪表。导波雷达变送器匹配的探杆形式有同轴杆式、防腐蚀护套杆式和单缆式三种。

  导波雷达液位计的高频振荡器周期性发射低功率毫微秒级微波脉冲,通过浸入工艺介质的探杆引导雷达波脉冲向下传导,当雷达脉冲抵达具有不同介电常数的介质接触界面时,部分能量被反射回变送器。反射强度取决于被测产品的介电常数。介电常数越高,反射强度越大。根据发射脉冲(参考脉冲)与接受到反射脉冲之间的时间差被换算成距离,由此计算出总体液位或界面位置。计算公式为:L=C×t/2,公式中L为基准面到液面间的距离,单位为m;C为雷达波传递速度,单位为300000km/s;t为雷达波从发射到接收反射回波的时间间距,单位为s。

  传感器接收到微波有固定回波、界面反射波及其他杂波。一般通过设置阈值参数、介电常数、灵敏度来屏蔽掉固定回波及杂波,从而测量的准确。导波雷达液位计为智能型仪表,带有HART通讯功能、回路测试功能及自诊断功能。

  2、工艺生产状况

  以醇酮装置罐体04LT2102导波雷达液位计为例 。04LT2102用于测量原料罐罐体液位,其测量值传递到DCS系统后,系统里的自动调节回路根据工艺条件的变化对罐体原料液位进行调节,目前大部分石化装置的罐体液位测量都采用导波雷达液位。

  导波雷达液位计典型故障分析处理

  故障一:参数设置错误,仪表出现问题

  由于导波雷达液位计安装后不具备调试条件,售后服务人员采用“盲设定”方法(即不需要实际介质、根据仪表设计数据表的介质物理参数直接标定的方法)设置仪表参数,到醇酮装置水联运时,发现部分导波雷达液位计指示不准。

  分析处理:按照经验,先检查导波雷达液位计参数设置。通过HART475与变送器通讯后查看参数设置情况,经过检查导波雷达液位计常用参数设置,发现该仪表参数设置错误,修正参数后观察一段时间后指示正常无误。

  故障二:导波管上部憋压,导致管内页面不能上升

  在现场共有5台导波雷达液位计在液位升到一定值后变化缓慢直到液位无变化,而现场确认容器内连续进料,现场磁翻板液位计液面仍在上升。

  分析处理:首先检查确认导波雷达液位计的参数设置正常,排除仪表参数设置的故障问题。然后,检查仪表安装现场,仔细观察发现,导波雷达液位计为顶部安装,容器为常压,为了达到较好的使用效果,在容器内设计了DN80的导波管。在打开连接法兰时,发现液位计导波管内带压,此时液位变化正常。由此判断导波管上部憋压,导致液位上升到一定位置后不能再上升了。在水联运后确认判断正确,开气相补偿孔处理后液位计工作正常。

  故障三:导波雷达液位计钢缆碰壁

  在装置开工投料过程中,发现导波雷达液位计波动较大,在20%-65%之间跳变。再次确认导波雷达液位计参数设置正确。通过对一次表及传感器进行联校,参数指示正常,排除一次表及传感器的故障。

  分析原因:

  ①出料泵P41105设计功率较大,在投料过程或装置进入状态时,出料泵回流量达到240m3/h左右,而导波雷达液位计为单缆式,造成导波缆绳摆动过大而碰壁。同时有导波缆绳下挂重锤配重太轻的可能。

  ②固定在容器内的DN80导波管过长,达9米,可能存在受力后弯曲,导致导波缆绳离管壁距离过近,容易碰壁。

  处理措施:由于容器无现场液位计,装置生产需要,决定采用临时测量手段解决过程液位测量问题,采取在容器及所附设备上取静压的方式满足生产,如图1所示。考虑容器内密封氮气压力恒定,停车退料泵P41103在生产时不使用,在其出口处采用现场差压变送器表取压力,在DCS系统上显示液位,同时在现场YR-ER101差压变送器面板上交替显示液位与压力。等到装置停车改造时校正导波管,并增加导波管支撑,增加重锤配重后。再次开车确认导波雷达液位计工作正常。

  图1 环己烷罐进出料工艺流程图

  导波雷达液位计是一种适应性强,安装调试方便,维护工作量小的优秀智能仪表。可以广泛应用与石油化工生产的容器液位测量,其测量效果也是比较显著。在实际应用中,应该注重过程的维护,严格按照 《导波雷达液位计使用说明书》进行安装操作,以免引起重大事故的发生。

  点击图片进入导波雷达液位计选型页面

  导波雷达液位计维护经验

  下面昌晖仪表总结几点维护经验仅供技术人员的参考:

  1、反复了解工艺流程,联系DCS控制系统,准确设置导波雷达液位计参数。

  2、熟悉导波雷达液位计本身的性能,了解其结构特征及现场使用的环境。

  3、充分分析导波雷达液位计安装的实际工艺情况,区分是工艺的原因还是仪表本身的原因。

  4、在现场处理时,将导波雷达液位计与同一罐体其他液位仪表进行分析比对,增加故障判断的依据,可以有效提高导波雷达液位计故障处理的速度和准确度。在没有其它液位仪表时,建议增设,比较重要的地方除了要求采取现场指示外还应该同时增加远传功能,如采用双法兰液位计或磁翻板液位计。

  相关阅读

  六个雷达液位计故障维修实例分享

  轻松处理导波雷达液位计指示波动问题

  概述

  蒸汽汽包是石油化工,发电等工业过程中的重要设备,保持液位稳定是汽包运行的重要条件。带气象补偿的导波雷达液位计克服了差压液位计,浮筒液位计,电接点液位计的缺点,维护量小,测量准确。

  汽包液位测量的现状

  目前,从汽包液位测量的基本原来来看,广泛使用的主要是基于连通器式和压差式两种原理。汽包液位测量的仪表主要有差压液位计,浮筒液位计和导波雷达液位计等仪表。

  1. 差压汽包液位计。差压式汽包液位计测量原理是通过吧液位高度的变化转化成差压的变化来测量液位计,这种转换是通过平衡容器形成残币水柱实现的,其准确测量液位计的关键是液位与差压之间的准确转换。差压汽包液位计的有点事精度和稳定性高,运行中故障率低,维护量小,但这种测量方式的误差与汽包压力和参比水煮温度有关,需要进行汽包夜里校准,且补偿计算复杂,此外还应考虑平衡容器温度变化造成的影响。

  2. 浮筒液位计。浮筒液位计是基于浮力原理工作的。当液位计在0位时,扭力管受到浮筒中立产生的扭力矩大,扭力管转角处于0°。当液位逐渐上升至高时,扭力管受到浮力产生扭力矩,转过一个角度,变送器将该角度转换成4~20MA直流信号,该信号正比于被测量液位。这种测量方式介质的密度变化会对测量精度造成影响,受到机械振动也会造成读数不准确。

  3. 电接点液位计。电接点液位计属于连通管液位计,原理是利用在锅炉水肿的电对筒体阻抗小而在蒸汽中的电对筒体的阻抗大的特性来测量液位。高压锅炉的锅炉水电导率一般要比饱和蒸汽的电导率大数万到数十万倍,因而电接点街违纪指示值受气包压力变化的影响较小,能方便的远传液位信号。但是有取样传感器性差,电机机械密封易泄露,电使用寿命短,指示不连续,维护量大的缺点。

  综上所述,由于汽包液位测量对象的复杂性,实际运行中的不确定因素和较大的测量误差,导致汽包液位计的测量常有较大的偏差。导波雷达液位计测量是一种的测量技术,克服了差压式,浮筒式,电接点等液位测量仪表的缺点,满足汽包液位测量的需求。

  导波雷达液位计测量原理及特点

  1. 测量原理。导波雷达液位计是依据反射原理为基础的雷达液位计,电磁脉冲信号以光速沿钢缆传播,当遇到被测介质时,雷达液位计的部分脉冲被反射形成回波并沿相同路径返回到脉冲发射装置,发射装置与被测介质表面的距离同脉冲在其间的传播时间成正比,经计算得出液位高度。

  2. 特点。导波雷达液位计的优点是信号稳定,测量不受液体密度和电气特性影响,测量,测量与调校方便,安装成本低且维护方便。

  3. 导波雷达液位计的选型及安装要求

  选型。导波雷达液位计是靠传感器发射电磁波,因此传感器的选择是导波雷达液位计选型的重要部分。导波雷达液位计的传感器有杆式,揽式和同轴式三种类型。通常选用杆式传感器。当测量范围较大时,由于运输和安装不变,建议采用揽式传感器。

  安装。导波雷达液位计的安装需考虑安装要求,容器特性和过程连接等因素。主要安装方式有以下两种:顶装或者侧装。

  导波雷达液位计两种安装方式安装时应注意:安装时要导波雷达与关闭需要由适当的距离;避免仪表传感器下方有明显障碍物,阻碍雷达波顺利达到被测介质表面;不要将导波杆安装在进料口附近;传感器与设备底部要有一定距离,不能接触到罐底。

  4. 气相补偿技术(GPC)。在高温高压条件下,电磁波信号在介质上方的蒸汽中的传播速度会降低,此时雷达测量的液位值将减小。选用带气相补偿的导波雷达,通过气相补偿功能队测量值进行补偿,可以得到一个准确的实际液位值。

  导波雷达液位计在汽包液位计测量案例

  在某锅炉装置的汽包上,汽包是产汽系统的主要部分,利用转化炉烟气段的高温热量和炉出口转化气高温余热,产出10.5MPA高压蒸汽,一部分作为工艺上的配汽参与反应,另一部分外送至高压蒸汽管网,实现设能的综合利用,提高装置的运行效率。由于汽包对于锅炉装置的重要性,测量汽包液位先后共使用了三种测量仪表:差压式液位计,普通导波雷达液位计,带GPC功能导波雷达液位计。由下图可知,通过实际测量,在高温时,普通导波雷达误差高达18%,带GPC时,测量误差仅为2%,带GPC功能导波雷达液位计在高温下测量数据比较稳定,真实。

  三种仪表测量数据比较

  总结

  带GPC功能导波雷达液位计在测量高温高压的环境中,各项性能明显优于其他类型的液位计,不受工艺条件的线制,维护量小,性能。是在汽包液位测量的不二之选。

  洞察 智控未来:YF-LDYW-V1系列物液位计

  在工业过程控制领域,物位测量的度与稳定性直接影响生产与效率。YF-LDYW-V1系列雷达物凭借其非接触式智能测量技术,为液体液位与固体料位监测提供了高性的解决方案,成为替代高端仪表的国产化标杆产品。

  革新测量原理:时域反射技术(TDR)该系列基于时域反射原理,通过发射毫米波电磁脉冲(光速传播)沿钢缆或探棒传输。当抵达介质表面时,部分能量被反射回接收装置。仪表计算脉冲往返时间差,结合光速常数,实时解算高度,实现全量程无接触测量。

  核心技术优势

  高精度抗干扰±3%测距精度,分辨率达0.001m(1mm)。采用算法智能识别虚假信号,过滤蒸汽、粉尘、泡沫等复杂工况干扰,数据真实。端工况适配支持-200℃至800℃超宽温域,耐受400bar高压,兼容真空环境(介电常数>1.2),适用于原油、挥发性液体、高温熔融物及粉煤、原煤等固体。工业级稳定设计高稳定性元器件,电源模块防护全输入/输出线路防雷抗短路IP65防护等级,0-100%湿度环境无忧运行智能化运维TFT彩屏实时显示数据,遥控器远程操作4~20mA/RS485双模输出,支持数据自动上传至云端平台双路报警继电器增强管控

  应用场景全覆盖

  介质类型

  典型应用场景

  液体

  储油罐、化工反应釜、污水处理池

  高粘稠浆料

  泥浆仓、食品加工罐

  固体颗粒/粉末

  煤仓、水泥料仓、谷物储仓

  环境

  真空干燥设备、高温熔炉

  安装便捷 低耗耐用

  灵活安装方式:顶部/侧面/旁通管/导波管安装功耗设计(0.5W),DC12-24V宽电压供电结构轻量化,维护成本近乎为零

  技术参数概要

  量程:0-5/10/15/25m(大可扩展至70m)供电:DC12-24V环境适应性:-20℃~+60℃(仪表本体)通讯:4~20mA / RS485防护:IP65

  YF-LDYW-V1系列以毫米波雷达技术为核心,融合智能算法与工业级硬件设计,重新定义非接触物位测量的精度边界。无论是炼油厂的高危储罐,还是食品厂的卫生级容器,亦或是矿区的粉尘料仓,它提供持续稳定的数据,助力企业实现精细化、智能化生产管控。

  PWRD81-EAADF2DFBFP2BTGMV雷达液位计便宜的

  导波雷达液位计的详细介绍

  导波雷达液位计是一种液体高度测量仪,其设计基于时间行程的原理。 测量开始后,雷达波以光速运行,运行时间可以用电子元件转换为物位信号。

  仪表测量从基准点到材料表面的距离,探针发出高频脉冲沿电缆传播。 当脉冲撞到水位表面时,在原路上反射回来,被仪表内的接收机接收,将时间信号转换成物理信号。

  导波雷达液位计测量结果准确,不受以下因素影响

  水体密度、固体材料松散情况、温度、投入时粉尘、水体表面泡沫等不影响测量。 使用同轴棒式探针的测量不受罐体和短管内部结构的影响,可以更换探针和探针。

  轨道雷达液位计的优点:

  雷达水位计可连续测量水体、粒子和浆料等,测量结果不受介质种类、周围环境温度变化、惰性气体和蒸汽、粉尘、泡沫等影响。

  测量精度为5mm,量程为60米,即使在250的高温、40公里的高压环境下,事项也能够测量,雷达液位计也适用于爆炸危险区域。

  耐蚀性高:轨道雷达液位计应用于水液罐、酸碱罐、浆罐、固体颗粒、小型储油箱。 各种导电性、非导电性介质、腐蚀性介质。

  Endress+Hauser导波雷达液位计 Levelflex FMP54 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP54适用于油气、化工和电力等行业的高温高压测量场合免维护的液位和界面连续测量仪表适合在油气,化工和电力等行业的高温高压场合应用温度范围: -196至 +450 °C, 压力范围: -1至+400bar Levelflex FMP55 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP55的多参数技术实现界面测量免维护的液位和界面连续测量仪表用一台仪表可以同时地监测界面和液位总值温度范围: -50至 +200 °C, 压力范围: -1至+40bar Levelflex FMP56 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP56适用于固体散料物位测量的经济、的基本型仪表免维护的固体散料连续测量仪表高性价比温度范围: -40至 +120 °C, 压力范围: -1至+16 bar Levelflex FMP57 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP57适用于固体散料物位测量的标准传感器,满足zui高测量要求。免维护的固体散料连续测量仪表标准传感器-开发过程符合IEC 61508标准,单台仪表满足SIL2, 同构冗余条件下达SIL3温度范围: -40至 +185°C, 压力范围: -1至+16 bar Micropilot FMR50 - 雷达物位仪雷达测量 行程时间原理 Micropilot FMR50适用于液位测量的基本型仪表非接触、免维护的液体测量,同时能有效介质的渗透高性价比温度范围: -40至 +130 °C, 压力范围: -1至+3 barEndress+Hauser导波雷达液位计 Levelflex FMP50 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP50适用于液位测量的基本应用免维护的液位和界面连续测量仪表高性价比温度范围: -20至 +80 °C, 压力范围: -1至+6 bar Levelflex FMP51 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP51满足液位测量zui高要求的标准传感器免维护的液位和界面连续测量仪表标准传感器-开发过程符合IEC61508标准,单台仪表满足SIL2, 同构冗余条件下达SIL3温度范围: -40至 +200 °C, 压力范围: -1至+40 bar Levelflex FMP52 - 导波雷达物位仪导波雷达测量 行程时间原理 Levelflex FMP52带涂层的探杆,适用于腐蚀性液体测量免维护的液位和界面连续测量仪表探杆表面涂层,适用于腐蚀性液体温度范围: -50至 +200 °C, 压力范围: -1至+40 bar Levelflex FMP53导波雷达测量 行程时间原理 Levelflex FMP53满足生命科学和食品行业的zui高卫生要求免维护的液位连续测量仪表满足生命科学和食品行业的zui高卫生要求温度范围: -20至 +150 °C, 压力范围: -1至+16bar

  导波雷达液位计测量原理

  接触式雷达是基于时间行程原理的测量仪表。雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。传感器发射出脉冲并沿缆式或杆式传导,当脉冲波遇到物料表面时反射回来被仪表内的接收器接收并将距离信号转化为物位信号。

  导波雷达液位计输入

  反射的脉冲信号沿缆式或杆式传至仪表电子线路部分,微处理器对信号进行处理,识别出微波脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,距离物料表面离D与脉冲的时间行程T成正比: D=C×T/2 其中C为光速因空罐的距离 E 已知,则物位 L 为: L=E-D

  导波雷达液位计输出

  通过输入空罐高度 E(= 零点),满罐高度 F(= 满量程)及一些应用参数来设定,应用参数将自动使仪表适应测量环境。对应于 4 - 20mA 输出。

  PWRD81-EAADF2DFBFP2BTGMV雷达液位计便宜的

  导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。

  导波雷达信号传播示意图如图2-4所示。

  在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。

  根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生-个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。

  根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号。

  假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种)质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。

  一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。

  1、能耗低。信号能量小,为信号至液面往返传输提供一条快捷的通道,信号的衰减保持在小限度,因而可用以测量介电常数低的介质液位;另外由于导波雷达耗能小,供电回路不是单独的交流供电,从而大大节省了安装费用。

  2、信号在传输中不受介质波动和储罐中的障碍物等的影响,因而仪表所接收到的返回信号能量相应较强,而且返回信号中的干扰性杂散信号小,基本对测量信号无影响。

  3、介质介电常数的变化对测量性能影响不大,导波雷达和常规雷达一样,采用传输时间来测量介质液位,信号自介质表面或水面反射回传的时间一样。不同的只是信号幅度的差别,普通雷达需考虑介质的影响,比较难辨识真正的液位信号,而导波雷达仅需测量电磁波的传输时间即可,无需信号的处理和辨别。

  4、介质密度的变化不影响测量,介质密度的变化影响浸没于介质中物体所受到的浮力,但不影响电磁波在波导体中的传播。

  5、雾气和泡沫不影响测量,由于电磁波不通过空间传播,因而雾气不会引起信号的衰减,泡沫也不会对信号进行散射而损失能量。

  在香料生产的关键环节中,香精储罐的液位测量对于保障生产流程的稳定、产品质量的均一以及生产。雷达液位计作为一种的液位测量技术,凭借其的优势,在香精储罐液位测量领域展现出的性能。香精,作为赋予产品特定香气的关键成分,其生产过程涉及多种香料的混合与调配。香精通常具有高价值......