FB8332DPAFAABDFS雷达液位计电话
雷达物位传感器的测量原理
雷达物位传感器基于时域反射(TDR)原理,通过发射26GHz或80GHz高频电磁波并计算回波时间差实现物位测量。电磁波在空气中传播速度接近光速(3×10⁸m/s),1ns的时间分辨率对应15cm的测量精度。某石化储罐实测显示,80GHz传感器对ε=1.8的柴油测量误差仅±2mm,比超声波传感器精度提高5倍。最新相位干涉技术可识别0.1°的相位变化,将分辨率提升至0.1mm级。传感器通常采用FFT算法处理回波信号,能在-40~200℃环境稳定工作。
ULR80X 智能导波雷达液位计发射能量很低的短的微波脉冲通过天线系统发射并接收。雷达波以光速运行。运行时间可以通过电子部件被转换成物位信号。一种的时间延伸方法可以确保短时间内稳定和的测量。
ULR80X 智能导波雷达液位计优势及应用
1.雷达液位计可以测量液体、固体介质比如:原油、浆料、原煤、粉煤、挥发性液体等;
2.可以在真空中测量可以测量介质常数>1.2的介质,测量范围可达70m;
3.供电和输出信号通过一根两芯线缆(回路电路),采用4…20mA输出或数字型信号输出;
4.非接触式测量安装方便采用其稳定的材料牢固耐用,分辨率可达1mm;
5.不受噪音、蒸汽、粉尘、真空等工况影响;
6.不受介质密度和温度的变化,过程压力可达400bar,介质温度可达-200℃至800℃;
7.安装方式有多种可以选择:顶部安装、侧面安装、旁通管安装、导波管安装;
8.调试可多种方式选择:采用编程模块调试(相当于一个分析处理仪表)、SOFT软件调试、HART手持编程器调试,调试起来方便快捷。
智能导波雷达液位计现货供应技术参数:
精度 液体:量程小于15m时,±0.1mm;量程大于15m时,测量值±0.2%
固体:20mm±0.05%
温度飘移 0.01%/℃
重复性 1mm
介质温度 -50~250℃
法兰温度 -30~200℃/-30~150℃防爆型
环境温度 -30~60℃/-30~55℃防爆型
耐压 40bar
表头显示 LCD可选
标准输出 4~20mA/HART
故障诊断输出 22mA
供电 18~35VDC/ 小于28VDC防爆型
外壳材料 铸铝还氧涂层
防护等级 NEMA(IP68)
防爆 ATEX II 1G 或II 1/2 D T 100℃ EEX ia II C T6...T3或EEX ia II B T6...T3
重量 2Kg(无探头)
注意事项
1.测量范围从波束触及罐低的那一点开始计算,但在情况下,若罐底为凹型或锥形,当物位低于此点时无法进行测量。
2.若介质为低介电常数当其处于低液位时,罐底可见,此时为测量精度,建议将零点定在低高度为C 的位置。
3.理论上测量达到天线*的位置是可能的,但是考虑到腐蚀及粘附的影响,测量范围的终值应距离天线的*至少100mm。
4.对于过溢保护,可定义一段距离附加在盲区上。
5.小测量范围与天线有关 。
导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。
同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。
同轴电缆等效传输线原理图如图 2-1 所示。
图 2-1 同轴电缆等效传输线原理图
由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。
这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。
其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z
, ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:
1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回
图 2-2 断路回波信号示意图
3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。
图 2-3 短路回波信号示意图
当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。
导波雷达测量系统原理:
导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。
导波雷达信号传播示意图如图2-4所示。
在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。
根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,***终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。
根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。
假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。
假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:
其中:c为电磁波在真空中的传播速度(3×10八立方米m/s)。
Y为介质的相对介电常数,
从为同轴电缆的相对磁导率(大多数液体其近似等于l}o
我们可以得到:
若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:
L可以表示为液位因罐体高度为H,***后得到的液位高度为:
h=H一L导波雷达测量系统示意图如图2-5所示。
图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆***大测量范围为6.1 m,柔性杆为***大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的较低点定义为上参考点,用它来代表液位的满点(***高可测点)和20mA输出电流。下部死区的***高点则定义为下参考点,用它来代表液位的零点(较低可测。
点)和4mA输出电流。在导波杆末端到罐底的距离为L。
由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o
一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。
在罐体内实际显示的液位高度(即以下参考点作为零点)为:
hD = h一L。一L, 这里L+L、是液位的整体迁移量。
本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,***后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。
导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。
同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。
同轴电缆等效传输线原理图如图 2-1 所示。
图 2-1 同轴电缆等效传输线原理图
由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。
这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。
其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z
, ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:
1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回
图 2-2 断路回波信号示意图
3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。
图 2-3 短路回波信号示意图
当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。
导波雷达测量系统原理:
导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。
导波雷达信号传播示意图如图2-4所示。
在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。
根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。
根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。
假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。
假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:
其中:c为电磁波在真空中的传播速度(3x10八立方米m/s)。
Y为介质的相对介电常数,
从为同轴电缆的相对磁导率(大多数液体其近似等于l}o
我们可以得到:
若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:
L可以表示为液位因罐体高度为H,后得到的液位高度为:
h=H一L导波雷达测量系统示意图如图2-5所示。
图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆大测量范围为6.1 m,柔性杆为大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的低点定义为上参考点,用它来代表液位的满点(高可测点)和20mA输出电流。下部死区的高点则定义为下参考点,用它来代表液位的零点(低可测。
点)和4mA输出电流。在导波杆末端到罐底的距离为L。
由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o
一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。
在罐体内实际显示的液位高度(即以下参考点作为零点)为:
hD = h一L。一L, 这里L+L、是液位的整体迁移量。
本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。
FB8332DPAFAABDFS雷达液位计电话
HD-D800雷达液位计
过滤水是指在工业生产中经过滤装置处理后的水,其水质通常较为清澈,但含有一定量的悬浮物和溶解物质。这些物质的存在会对液位测量造成一定的影响。因此,选择合适的测量方法和设备对于测量的准确性和稳定性。
而HD-D800雷达液位计是一种非接触式液位测量仪表,通过发射微波对介质表面进行探测,根据微波的反射和传输时间计算出液位高度。
HD-D800雷达液位计具有以下优点:非接触式测量:可避免与介质直接接触,降低了对介质的污染风险。精度高:由于采用高频电磁波进行测量,测量精度高,误差小。稳定性好:受介质物性、压力、温度等因素的影响较小,性能稳定。适用范围广:可用于各种液体介质的液位测量,包括腐蚀性、易燃易爆等介质。
从本文中可以看出HD-D800雷达液位计作为一种非接触式液位测量仪表,在过滤水测量中具有广泛的应用前景。其具有精度高、稳定性好、适用范围广等优点,可满足各种复杂环境下液位测量的需求。
固体散料测量的技术突破
低介电常数(ε<2)粉料测量是行业难题,80GHz雷达传感器通过增强发射功率(<20mW)和窄波束(<4°)提升信号反射率。某电厂粉煤灰仓实测显示,传统26GHz雷达回波强度仅-90dBm,而80GHz型号达-65dBm。粉尘环境需配备0.3MPa压缩空气吹扫装置,天线积灰。多目标识别算法可区分下落物料与料位面,动态测量误差控制在0.5%FS以内。料仓倾斜时,三维建模技术能自动补偿斜面导致的测量偏差。
是化工行业中的一种液位测量仪器,广泛应用于各行各业,受到了用户们的与喜爱。导波雷达又分为,杆式导波雷达液位计、缆式导波雷达液位计和同轴管式导波雷达液位计。今天小编想给大家介绍杆式导波雷达液位计,看看它有哪些特点。
首先杆式导波雷达利用传输时间来测量介质的液位,它只需测量电磁波的传播时间,不需要对信号进行处理和识别,因此介质的变化对导波雷达液位计的测量性能没有太大影响。另外介质密度的变化对导波雷达液位计的测量没有影响,介质密度的变化主要影响淹没在介质中物体的浮力,但不影响电磁波在导波体中的传播。
其次雾和对杆式导波雷达液位计的测量也是没有影响的,因为电磁波不会在空间中传播,因此雾不会影响信号衰减,泡沫也不会散射信号并损失能量。而且导波管上介质的沉积和污垢对液位测量影响也是不大的。
一点也是很多用户选择杆式导波雷达液位计测量液位的重要原因,杆式导波雷达能耗低,液位计的导波体作为信号到液位的传输位置提供了一个有效的通道,信号的衰减保持在很小的程度,因此可以用来测量介电常数低的介质的液位。此外,由于导波雷达的能耗较低,采用回路电源代替单独的交流电源,节省了大量的安装成本。
FB8332DPAFAABDFS雷达液位计电话
导波雷达液位计与其他雷达液位计相比,具有不同的工作原理,也有自己的优势和不足。用户尤其是采购人员了解这些信息,对于正确的选型重要。下面,就导波雷达液位计的原理和优缺点具体介绍如下。
一、导波雷达液位计的工作原理
导波雷达液位计的工作原理是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
而普通雷达液位计的工作原理是发射—反射—接收。具体说来就是,雷达传感器的天线以波束的形式发射电磁波信号,发射波在被测物料表面产生反射,反射回来的回波信号仍由天线接收。发射及反射波束中的每一点都采用超声采样的方法进行采集。信号经智能处理器处理后得出介质与探头之间的距离,送终端显示器进行显示、报警、操作等。
二、导波雷达液位计的优缺点
1、导波雷达液位计的不足
(1)不适合用于测量腐蚀性和粘附性液体,也不适合用于食品等级要求较高的场合
从两种雷达液位计的不同工作原理,可知雷达液位计是非接触式测量,导波雷达液位计为接触式测量。所以,需要考虑介质的腐蚀性和粘附性,在食品等级要求较高的场合,也一般不用导波雷达液位计。
(2)导波雷达液位计的安装和维护不便
导波雷达液位计在测量时,过长的导波杆(缆)为安装和维护增加了不少困难。而且相比能够互换使用的普通雷达液位计,导波雷达液位计的导波杆(缆)的长度根据工况固定,一般不能互换使用。所以,一般来说,导波雷达液位计要比普通雷达液位计的选型和维护要繁琐的多。
(3)导波雷达液位计的测量距离受限
导波雷达液位计的测量距离不会很长,而普通雷达液位计在30~40m的罐体上应用比较常见,甚至可测到60m。
2、导波雷达液位计的优势:
(1)对波动较大介质的测量更稳定
在罐内有搅拌,介质波动较大的工况下,用底部固定的导波雷达液位计比普通雷达液位计更为稳定,优势也更为明显。
(2)更适于对小罐体内物料的测量
在测量小罐体内的物位时,由于安装测量空间小(或罐内干扰物较多),一般普通雷达的液位计不适用,而导波雷达液位计则不受限。
(3)导波雷达液位计不受介电常数高低的限制
普通雷达液位计和导波雷达液位计的测量原理都是基于介质介电常数的差别进行测量的,由于普通雷达液位计发射的波是发散的,当介质介电常数过低时,信号太弱测量就会不稳定,而导波雷达液位计发射的波是沿导波杆传播的,信号相对稳定。
此外,导波雷达液位计一般还有底部探测功能,可以根据底部回波信号的测量值加以修正,使信号更为稳定准确。雷达液位计的原理和应用
参数: 工作频率:100MHZ-1.8GHZ
测量范围:缆式:0-30m;杆式、双杆式、同轴管式: 0-6m;
重复性:±2mm
分辨率:1mm
输出电流信号:4-20mA
:<0.1%
通讯接口: HART 通讯协议
过程连接: G11/2A螺纹
法兰DN50,DN80,DN100,DN150,DN200,DN250
过程压力: -0.1-2MPa
电源: 电源:24VDC(±10%),纹波电压:1Vpp
环境条件: 温度-40℃~+70℃
外壳防护等级: IP67
防爆等级: EXia IIC T6
两线制接线: 仪表供电和信号输出共用一根两芯屏蔽电缆线
电缆入口:2个M20*1.5或1/2NPT(电缆直径5--9mm)