5408 FISHA1E11N2ZZCAA3M5Q4QT雷达液位计生产厂
液体储罐的高精度监测方案
相比超声波仪表,雷达料位计不受蒸汽、真空或压力(10MPa)影响。某原油储罐应用显示,26GHz雷达在ε=2.1介质中保持±3mm精度。两线制设计功耗<4mA,满足本安防爆要求(Ex ia IIC T6)。最新智能算法通过多点平均抑制液面波动,使动态误差降低80%。导波雷达(GWR)利用探杆穿透泡沫层,真实液位检出率>99%,特别适用于发酵罐等复杂工况。
1、应用:液体、固体颗粒2.测量范围:20米3.过程连接:螺纹、法兰4.介质温度:-40~250℃5.过程压力“-0.1~2MPa6.精度:±3mm7.频率范围:100MHz-1.8GHz8.防爆登记:Exia Ⅱ CT6 Ga Exd ia Ⅱ CT6 Gb9.防护登记:IP6710.信号输出:4…20mA/HART(两线)
导波雷达液位计是接触式物位测量,采用时域反射技术(TDR)电子单元发射微波脉冲沿着导波杆(缆)传播,当接触被测介质时,产生反射信号由电子部件接收,计算发射到接收的间隔时间,转换为被测介质的距离。导波雷达液位计测量原理如图1所示。通过测量发射脉冲与反射脉冲的时间差,并通过以下公式即可计算出被测物质到仪表法兰的距离:2D=Ct (1)
式中:C为光速;T为发射脉冲与反射脉冲时间差;D为空间距离。
根据设定的满罐和空罐位置,通过以下公式即可计算出物料高度并输出4~20mA电流:
物料高度:L=E-D(2)
输出电流:Io=4+L×16/E (3)
式中:L为物料高度;E为量程。
导波雷达液位计适合测量液/液界面,如油水界面,油与水、油与酸、低介电的有机溶剂(甲苯、苯、环己烷、己烷、松节油和二甲苯)和水或酸。测量液/液界面应注意以下几点:
(1)介电常数较低的介质位于上部。
(2)两种液体的介电差异不低于10。
(3)上层介质的介电常数是已知的,该参数可在现场确定。
(4)上层介质的大厚度取决于其介电常数。
(5)上层介电常数下限<3,下层介电常数上限>20。
(6)可同时进行液位测量和界面测量。
导波雷达液位计可用在几何尺寸小的容器,也可用在旁通管和各种尺寸的储罐,适用于测量多种粉尘和谷物等。导波雷达液位计测量特性:
(1)无可活动机械部件,维护成本低。
(2)安装方便,支持罐顶安装或旁路管顶部安装。
(3)适用于液面、界面和粉末状或小颗粒状固料的物位测量。
(4)不受介质密度和pH值等物理参数变化的影响且无需进行补偿。
(5)适用于高温、低温、蒸汽和高压场合。
导波雷达液位计使用过程中微波沿导波管向下传导,尽量避免导波杆周围出现金属干扰或物料堆积的情况发生。导波雷达有的诊断功能,具有检测导波杆聚积物的能力。导波雷达液位计的结构由3个部件组成,即雷达变送器、过程密封件和导波杆。过程密封件和导波杆使得低能脉冲微波以光速沿其向下发送,在导波杆与物位(气/物、气/液或液/液界面)的交点通过导波杆被反射回雷达变送器。雷达变送器接收导波杆的测量信号,然后对这些信号进行处理并提供稳定的输出信号。
嘉可仪表JK系列雷达液位计种类,主要有缆绳式导波雷达液位计、杆式导波雷达液位计、喇叭口天线型雷达液位计、防腐四氟型雷达液位计、水滴型天线雷达液位计、卫生型平板雷达液位计、PFA桶天线雷达液位计、水利雷达液位计、高温型雷达液位计、高频雷达液位计、调频波FMCW型雷达液位计等。
5408 FISHA1E11N2ZZCAA3M5Q4QT雷达液位计生产厂
主要规格产品5301 型用于测量液位或界面(界面测量适合于*浸入导波杆)。
5302 型用于测量液位和界面。
5303 型用于测量固体物位。测量原理 时域反射原理 (TDR)测量范围 长达 164 ft. (50 m)介电常数使用安装在旁通管的同轴导波杆或单缆导波杆测量时小为 1.2,其他导波杆为 1.4。请参阅 《产品数据表》了解完整的数据规格。导波杆材质不锈钢、 合金400 、 合金C276 (UNS N10276) 或 PTFE 涂层的不锈钢参考精度±3 mm (± 0.1 in. ) 或 ± 0.03% 测量距离,以者为准重复性±1 mm (± 0.04 in.)输出模拟量4-20mA叠加HART® 信号
FOUNDATION® 现场总线
Modbus过程温度 752 ºF (400 ºC)。请参阅 《产品数据表》了解完整的数据规格温度-320 ºF (-196 ºC)过程压力模拟量4-20mA叠加HART® 通讯 和 FOUNDATION® 现场总线防爆认本质 (IS) 或防爆/防火认(ATEX、CSA、IECEx、FM...)显示单元5 位集成式显示器(可选)输出变量液/料位,界面,空高,界面距离,上部产品厚度,体积,液位速率,信号强度,壳体内部温度,百分比量程外壳带双腔室的聚氨酯涂层模铸铝制或不锈钢 外壳。外壳防护等级Type 4X、IP66、IP67现场总线功能链路主设备(备用 LAS),PlantWeb 警报信息,设置向导现场总线模块资源模块、3 个转换模块、6 个模拟输入 (30 ms)、PID (40 ms)模块、计算模块、输入选择器、输出选择器 (65 ms)、信号表征器 (75 ms)组态工具罗斯蒙特 Radar Master、375 现场手持通讯器、AMS Suite:智能设备管理器、DeltaV 或其他兼容 DD 或 EDDL 的主机系统。
罗斯蒙特导波雷达液位计 5300液位变送器适用于具有挑战性的液体、浆体和固体测量。该ROSEMOUNT物位计具有安装简便、无需标定等多种优势,且不受过程条件的影响。探头类型:硬单线、分段单线、软单线、硬双线、软双线、同轴型、带PTFE 涂层的探头、蒸汽探头。Ultra-thin layer detection through Pe-in-Petechnology. 罗斯蒙特物位计探头末端探测功能可提高液位测量的性。根据 IEC,适合要求 SIL/SIL2等级的应用。其中包括高压饱和蒸汽在电力和工业蒸汽系统中的应用,如锅炉汽包、蒸汽分离器、除氧器和高压给水加热器等。
若使用基于 HART的控制系统或资产管理系统,在安装罗斯蒙特液位变送器之前,请确认该系统的 HART 功能。安装之前,请先校验标签上的导波杆长度(L)。如需调整ROSEMOUNT导波雷达物位计导波杆长度,请参阅样册上的“调整导波杆长度”。管理低反射率、端温度和压力、重产品涂层和饱和蒸汽。蒸馏塔、给水罐和液化气的替代品。通常情况下,操作员并不能清楚得看到过程材料的堆积和表面状态的变化。测量设备可能具有监测表面状态的诊断功能,但接收信息却是另一大难题。如果采用模拟系统,则只能实现液位测量,限制了有价值的诊断信息的使用。
本公司主要代理经销欧洲、美国等厂家的工控机电设备、传感器、液位计、分析仪、流量计、变送器、编码器、泵阀、PLC、温度计等各种工控自动化产品和仪器仪表。经过长期的发展,公司汇集了国内价格及库存优势,具备全面业务进出口报关等,货期稳定、价格具有竞争力。
罗斯蒙特温度变送器644HAE5J5M5
ROSEMOUNT差压变送器3051CD3A22A1AS2B4E8M5HR5
ROSEMOUNT导波雷达液位计5301FAMSS1V4BE01011CA
ROSEMOUNT雷达物位计5301HA1S4Q8C1
罗斯蒙特雷达液位计5301HA1H1N4AM00190IBE1C1
罗斯蒙特差压变送器3051TG3A2B21AB4K5M5
ROSEMOUNT导波雷达液位计5301HA1H1N3AM0140ADNAM1C1
罗斯蒙特导波雷达物位计5301HA1S1V3AM0125AANAM1C1
ROSEMOUNT物位计5301HA1H1N3AM00080AANAC1
罗斯蒙特雷达物位计5301HA1S1E5BM01900BBE1M1C1
罗斯蒙特压力变送器3051TG1A2B21AB4K5M5
ROSEMOUNT雷达液位计3301HA1S1V3AM0345RA2AM1C1
ROSEMOUNT液位计3301HA1S1V4AM0180BANAM1C1
ROSEMOUNT雷达液位计5301HA1H1N3AM0230NAM1C1
罗斯蒙特压力变送器3051TG4A2B21AB4K5M5
罗斯蒙特温度变送器4
罗斯蒙特导波雷达液位计3301HA14
罗斯蒙特雷达物位计54
罗斯蒙特液位计5408A1SHA1E57R3DASAA3M5C1
ROSEMOUNT压力变送器3051TA2A2B21AB4M5
ROSEMOUNT差压变送器3051TA1A2B21AB4K5M5
罗斯蒙特导波雷达物位计5301HA1H1N3AM0230NAM1C1
ROSEMOUNT导波雷达物位计5301HA1S1V3AM0225HBNAM1C1
罗斯蒙特差压变送器3051TA2A2B21AB4M5
ROSEMOUNT温度变送器644H5J6M5
ROSEMOUNT导波雷达液位计5301HA1H1N3AM0340AANAM1C1
罗斯蒙特液位计3301HA1S1V3AM0370RAE1M1C1
ROSEMOUNT液位计5900SPSF4
罗斯蒙特雷达液位计5900SPF2FI5R2AG1H8SPV8Z0ST
ROSEMOUNT压力变送器3051TG2A2B21AB4E5M5
ROSEMOUNT雷达物位计5900SPF14
罗斯蒙特物位计590A4AVQ4
ROSEMOUNT超声波液位计3102HA1FRCNAST
罗斯蒙特超声波液位计4ST
美国ROSEMOUNT流量计,罗斯蒙特流量计
美国ROSEMOUNT差压变送器,罗斯蒙特差压变送器
美国ROSEMOUNT手操器,罗斯蒙特手操器
美国ROSEMOUNT导波雷达物位计,罗斯蒙特导波雷达物位计
美国ROSEMOUNT物位计,罗斯蒙特物位计
美国ROSEMOUNT超声波液位计,罗斯蒙特超声波液位计
美国ROSEMOUNT压力变送器,罗斯蒙特压力变送器
美国ROSEMOUNT温度变送器,罗斯蒙特温度变送器
美国ROSEMOUNT变送器,罗斯蒙特变送器
美国ROSEMOUNT温度传感器,罗斯蒙特温度传感器
美国ROSEMOUNT电磁流量计,罗斯蒙特电磁流量计
美国ROSEMOUNT液位计,罗斯蒙特液位计
美国ROSEMOUNT雷达液位计,罗斯蒙特雷达液位计
美国ROSEMOUNT涡街流量计,罗斯蒙特涡街流量计
美国EMERSON流量计,艾默生流量计
美国ROSEMOUNT雷达物位计,罗斯蒙特雷达物位计
导波雷达液位计配备不同的探头,以满足各种应用要求。硬杆类中的单杆式探头能量传输效率较低,外界干扰敏感,是受物体接近程度影响较大的探头,应避免靠近干扰物安装,如设备内壁或容器内构件等。适合测量小量程的液体和粉末状或小颗粒固体料位。同轴式探头能量集中在小口径的金属管内,能量传输效率高,不受液面湍动的影响,抗干扰能力强,安装空间要求低,可以近容器内金属构件安装或者与其他物位仪表装在同一旁通管内,且不会相互影响。其结构特点决定了其更适用于低黏度的清洁介质,介电常数液体或界位测量。不适用高黏度的、易挂料、易结垢的场合的物位测量,如重油型加工处理装置中的原料罐、地下污油罐等。
罗斯蒙特导波雷达液位计上位机界面简洁、直观,其主要的控制界面是在一个选项卡控件中添加三个模块,每个模块由相应的控件组成操作界面。在界面内还增加了通信串口设置、系统界面文本信息和时间显示等模块,通过窗体的属性对各个控件增添了彩和图片,并对文本信息进行了修饰。上位机系统程序启动后,计算机上显示出可视化界面,但上位机和下位机的通信链路尚未建立,无法发送控制命令。通过对端口参数的选择和设置,点击连接端口按键即可完成通信连接。主体控制部分显示出监控界面,在监控界面内可以实现液面高度显示和波形图,还可以显示测量环境的实时温度等。存储和参数设置模块与产品信息模块,可以通过按键点击对应的选项卡名称,即可转换到该界面中。
本文旨在通过实践来探讨电厂低压给水加热器上液位的测量,并解析了加热器结构及其采用各种不同液位测量仪表的历程和工况特点,论述了导波雷达液位计在低压给水加热器上的使用优势,藉此给电力行业热工人士提供一些有价值的参考。
给水加热器的结构与功能
给水加热器是一种利用汽轮机抽汽加热给水,以提高热效率的加热设备,是电厂回热系统的重要辅机之一。加热器的工作原理是利用汽轮机做过功的乏汽加热凝结水和给水,而不是直接将乏汽排入凝汽器,以充分利用乏汽的焓,降低冷源损失,同时减弱锅炉受热面的热应力。
加热器按汽水传热方式的不同,可分为表面式和混合式。目前,在火力发电厂中除了除氧器采用混合式加热外,其余高低压加热器均采用表面式加热。按照水侧的布置方式和流动方向的不同,表面式加热器又分为立式和卧式。
表面式给水加热器的特点,是加热工质(汽轮机的抽汽)与被加热工质(锅炉给水)相互不混合,通过管壁来传递热量。传热管内是给水,传热管外是蒸汽。蒸汽在加热器里放出热量并凝结成疏水,由疏水口排出。由于加热蒸汽通常都具有一定的过热度,为使给水温度达到所期望的值,同时加热面积尽可能的少,可设置一个过热蒸汽冷却段,以充分利用抽汽的过热度。蒸汽由汽相变为饱和水,同时放出汽化潜热的过程是在凝结段里完成的。凝结段是给水加热器的主要换热区段,管内给水大部分的焓升是由这一区段提供的。因此,具有凝结段的加热器是电厂用给水加热器的基本型式。
加热器中液位测量的重要性
加热蒸汽和被加热的水之间是通过金属表面来传递热量的。由于传热热阻的存在,给水不可能被加热到蒸汽压力下的饱和温度,不可避免地存在着一个端差。因此,给水端差(TTD = Terminal Temperature Difference)和疏水端差(DCA = Drain Cooler Approach temperature difference)是加热器的两个主要。给水端差和疏水端差的设置,直接影响到机组的率和运行的性。给水端差又称为上端差,是加压器蒸汽压力下的饱和温度与出口给水温度之差。疏水端差又称下端差,是离开加热器汽侧的疏水温度与进入水侧的给水温度之差。
图1 卧式表面式给水加热器结构实物
合理的给水端差的设置,能够有效提高热交换效率,是成本控制及盈利能力的重要组成部分。在实际运行中,给水端差增大的原因有:加热器的抽汽压力和抽汽量不稳定;加热器受热面结垢使传热恶化,增大了传热管内外温差;加热器内积聚了空气,不凝结的空气附在传热管表面形成空气层,妨碍了蒸汽的凝结放热,增大了传热热阻;凝结水或给水的部分或不经过加热器,而是从加热器旁路通过;凝结水位过高,淹没了一部分传热管,使传热面积减少。而给水端差过小,纵然可以提高热交换效率,但加热器长期处于过热状态,会大缩短使用寿命。由此可见,在日常操作中,维持合理的加热器凝结水位高度,从而找到热交换效率和设备寿命之间的平衡点,成为热工控制的首要任务。
加热器中液位测量的发展历程
给水加热器中存在高温、高压及大量蒸汽,恶劣条件使之成为测量的难点。给水加热器的水位检测历经了几个发展阶段,从初的磁翻板液位计、浮筒液位计、直到今天比较常用的差压变送器和导波雷达液位计。
磁翻板液位计又称就地水位计,是为传统的一种水位测量方式,至今仍然是加热器的标准配置。磁翻板液位计利用浮力原理,根据加热器的设计温度、压力及水的密度,制造出满足工况条件的浮子。浮子装在和加热器相连的筒体中,筒体中的水位和加热器中的水位等高,而筒体内浮子漂浮在水面上,即代表水位的高度。浮子内的永磁铁通过磁耦合作用引起筒体外的小磁板翻转,通过小磁板两面颜的不同,来就地读取加热器中的水位高度。磁翻板液位计是一种稳定的测量技术,但它存在两大缺陷。一是测量精度不高。因为加热器中的温度和压力的变化,凝结水的密度也发生变化,根据阿基米德浮力定律f浮=ρgV,当凝结水密度变化时,浮子浸没在水中的体积也发生变化,因此浮子淹没高度的变化会影响到测量精度。二是就地水位计在初的时候没有远传信号。
浮筒液位计是上世纪80年代至本世纪初常用的加热器水位测量方式。因为浮筒液位计集成有信号转换器,所以能够提供远传信号。但是浮筒液位计也是基于浮力的原理,因此同样面临着测量精度差的问题。此外,浮筒液位计多数采用扭力管式测量原理,表头笨重且需要周期性的标定,给使用和维护带来了诸多不便。
图2 导波雷达液位计工作原理
随着差压变送器技术的发展和产品性价比的提升,差压变送器配合平衡容器成为本世纪以来较为常用的加热器水位测量方式。但无论是采用双室平衡容器,还是采用单室平衡容器,对于测点位置的选取和安装都有较高的要求。因为,低加汽测可能工作在负压工况下,所以测量值波动大,影响到生产人员的正确操。此外,差压变送器的测量原理是:ΔP=ρgh,为达到地测量,需要对密度、温度及压力进行补偿。
导波雷达液位计采用的是时域反射原理(TDR原理,Time Domain Reflectometry)。导波雷达的工作原理,是由表头高频脉冲发生器产生电磁脉冲波信号,该信号沿着导波杆(探杆)向下传送,当遇到比此前传导介质(如空气或蒸汽)介电常数大的液体表面时产生反射信号,用超高速计时电路测量出脉冲波信号从发射到接收的传导时间。传导时间与电磁脉冲波速度乘积的一半,即代表被测介质表面到导波雷达液位计过程连接处的距离;通过给定的容器高度减去距离,计算得出液位的高度,从而达到对液位的测量。
导波雷达液位计的测量原理及优点
时域反射理论模型早在1939年就已建立,初用于电信业查找电缆断点。上世纪90年代中后期,部分液位计厂家致力于将TDR技术应用于工业仪表,称之为导波雷达液位计。导波雷达液位计问世后,随即成为物位测量的一大利器。导波雷达液位计的测量结果和被测介质的温度、压力、密度、粘度、电导率和介电常数无关,可以用于测量液体、浆料和固体,也可以测出物位或某些工况下的液体界面。因此,当导波雷达液位计满足设计温度、压力、量程、精度、材质及安装位置的要求时,是一种理想的物位测量仪表,几乎可以取代大多数物位计。当然,导波雷达液位计也同样面临着一些使用的限性,如其典型精度为±3mm、对温度和压力耐受的限、当介质粘度高时在探杆上形成挂料、固体介质容易磨损并拉断探杆,以及容器内的搅拌影响探杆的安装等。
做为一种探杆和被测介质相接触的接触式物位测量仪表,导波雷达液位计的选型重点集中于探杆形式。为此,各导波雷达液位计厂家研发生产出不同的探杆形式,以满足各种工况的要求。如笔者所使用过的美国Magnetrol品牌的导波雷达液位计,就有多达22种探杆形式可供选择。
图3 单杆探杆信号轨迹图、通州探杆信号轨迹图、同轴探杆实物图、通州探杆实物剖面图
那么,如何选用合适的探杆形式呢?首先,需要考虑探杆对温度和压力的耐受。其次,需要考虑电磁脉冲信号在探杆上传播的轨迹。
单式探杆(单杆、单缆)上信号轨迹呈逐步发散的状态。在信号的轨迹范围内,可能会产生干扰信号影响到液位的测量。典型的干扰信号有安装管嘴,以及容器内的焊缝、焊渣和结构件等。同轴探杆的信号则集中在同轴探杆内。同轴探杆的结构是中间有一根实心金属杆(通常直径为8mm),电磁脉冲信号在金属杆上传播;其外侧是一根金属套管(通常直径为22mm),金属套管作为金属杆的屏蔽层,起到屏蔽外部的干扰信号及集中信号的作用,以提高信号的灵敏度,便于测量介电常数较低的介质。因此,采用同轴探杆可以不用考虑安装位置及容器内结构对测量带来的影响,是理想的一种探杆形式。同轴探杆的限在于,其量程受限,通常为6m左右,以及高粘度介质所形成的“搭桥”现象。
那么是不是说使用导波雷达液位计测量低压加热器液位,只需考虑到以上两点就了呢?实际上,还需要结合电厂低压加热器实际工况中存在大量蒸汽的特点。一是要考虑蒸汽的侵蚀作用对于探杆和表头之间密封部分的材质选择和制作工艺的考验。见图3红圆圈部分。依据笔者经验,选择应用业绩多、历经实践考验的品牌是产品的有效保障。二是需要考虑蒸汽工况下,电磁脉冲信号的传播在蒸汽中被衰减的情况。通常,导波雷达的测量原理可用以下公式来表示:
L=D – C0.t/2
L=液位高度
D=容器高度
C0=真空中的光速
t=发射信号和反射信号的时间间隔
在蒸气工况中,实际的液位以 L真来表示,实际的信号传播速度用C真来表示;仪表测量出的液位以L测来表示,那么:
L真=D – C真.t/2
L测=D – C0.t/2
因为C真L测。依据导波雷达液位测量值来控制凝结水的高度,所造成的实际影响是凝结水位过高,致使低压加热器内部分传热管被淹没在凝结水下,热交换效率下降,给水端差增大。
图4 7×S蒸汽探杆结构剖面图
通过实际的观察数据和相关的文献资料信息,在低压加热器的工况条件下,C真和C0之间的差异在2%~5%之间。因为C真受到蒸汽温度、压力的影响而不断变化,所以仅从改变仪表系数的方面来进行C真的修正,还是不能很好满足对测量准确度的要求。
对于C真进行实时的补偿,是导波雷达在蒸汽工况下能完成准确测量的先决条件。笔者所使用的Mangetrol导波雷达液位计采用了专利的蒸汽探杆,用于实时的C真补偿,其补偿的工作原理如下:
在蒸气探杆中,距离表头下方125mm处安装有一个蒸汽目标(Steam Target),表头每秒会发送一个询问信号,该询问信号到蒸汽目标后被发射回表头的时间t问询被测量。此时,电磁脉冲信号在当前工况下的速度C真可以用以下公式准确计算出来:
C真=d/t问询,其中,d=125mm
获得C真后,导波雷达将以此值来进行真实液位值的计算,从而达到实时补偿的目的。
小结
综上所述,Magnetrol专利的蒸汽探杆,集成了同轴式、良好的蒸汽隔密封及实时蒸汽补偿的优势。同时,Magnetrol致力于同轴探杆的大规模推广,具有同轴探杆生产的规模优势,给电力行业用户带来了高性价比的产品。此外,Magnetrol专利的AURORA系列液位计,将磁翻板和导波雷达液位计集成为一体,提供了重要应用场合的现场和远传测量,减少了过程接口数量,避免了潜在泄露点,提高了使用维护的便利性。
导波雷达液位计主要由雷达变送器、过程密封件和导波杆三部分组成。表头内部安装雷达变送器,采用一次压铸成型的双室结构,带LCD显示,大多数情况下可以向任意方向旋转,便于现场观察。根据不同的环境条件选择相应表头材质,常规条件下可以选择聚氨酯涂层,沿海地区可以考虑316ss等耐腐蚀性不锈钢。导波杆共分为两 类五种,即硬杆类,包括同轴、单杆和双杆三种;软缆类,包括单缆和双缆两种。
导波雷达液位计配备不同的探头,以满足各种应用要求。硬杆类导波雷达液位计测量范围较小,制造商推荐可选范围一般在0~6m,而软缆类导波雷达液位计测量范围较大,制造商推荐可选范围通常在0~50m内,甚至可以达到80m,所以导波杆长度可根据测量要求,自由定制选择。
硬杆类中的单杆式探头能量传输效率较低,外界干扰敏感,是受物体接近程度影响较大的探头,应避免靠近干扰物安装,如设备内壁或容器内构件等。适合测量小量程的液体和粉末状或小颗粒固体料位。
同轴式探头能量集中在小口径的金属管内,能量传输效率高,不受液面湍动的影响,抗干扰能力强,安装空间要求低,可以近容器内金属构件安装或者与其他物位仪表装在同一旁通管内,且不会相互影响。其结构特点决定了其更适用于低黏度的清洁介质,介电常数液体或界位测量,而在挂料和结晶的应用场合容易产生测量误差,因此不适用高黏度的、易挂料、易结垢的场合的物位测量,如重油型加工处理装置中的原料罐、地下污油罐等。
软缆类中的单缆式探头底部配有重锤,主要用于测量大量程的液体和固体料位。硬杆类型中的双杆、软缆类型中的双缆与单杆、单缆相比,增加为平行双探头,导波雷达液位计能量集中在两个探头之间,测量能力,抗干扰、抗黏附能力高于单探头,灵敏度低于同轴探头。