LT-4401A雷达物位计价格低的
防爆认证与安全防护设计
化工领域需满足ATEX/IECEx防爆标准,隔爆型(Ex d)外壳可承受1.5MPa内部爆炸压力。本安型(Ex ia)设计限制回路能量<1W,适用于Zone 0区。整体防护等级IP68,可短时浸没10米水深。某油气平台案例显示,通过API 670标准的雷达料位计MTBF超15年。最新光纤传感技术彻底消除电火花风险,已用于氢气储罐监测。
Magnetrol麦格纳邱液位设备 700系列高性能导波雷达液位计 704、705、706
常用型号:
705-510a-110/7mr-a110-120 :
705-510A-110/7MA-A110-181:
705-51AA-110/7MS-A578-120 :
705-510A-110/7MS-A578-120:
705-510A-110/7MA-A110-110
正常货期:货期 8-10周,急需货期现货可以联系店主安排调货
Eclipse增强型705是采用具有性的导波雷达(GWR)技术,两线制, 24VDC回路供电的液位变送器。这个单一的变送器可以用于类型的探杆,并提供更强的性,正如SFF=91%的失效系数所表现的,允许它在SIL 3回路中使用。
Eclipse 705系列高性能导波雷达液位计
ECLIPSE导波雷达液位计的设计提供了远远超过许多传统技术的测量性能。该产品在工业上首次采用了的***外壳设计,它是把接线室和电子线路室分别安装在同一个平面上,***优化的倾斜角度更方便接线、组态和观察显示。
ECLIPSE 705变送器支持FDT/DTM标准与PACTware?PC端软件可以允许额外的配置和灵活的故障排除。
技术
导波雷达
Eclipse 705系列高性能导波雷达液位计
低功耗脉冲雷达 结合了时域反射原理 、等效采样(ETS)与现代化低功率电路等技术。这些原理与科技的集成创造了高速导波雷达 液位计。电磁脉冲通过导波管传播,它聚焦于能量,并产生比非接触式雷达更有效的系统。
可测量低介电常数介质(εr ≥ 1.4)
容积输出
连接/拆卸探杆轴套
可在蒸汽工况中使用及忽视泡沫
IS, XP与非易燃认
忽视挂料
原理
ECLIPSE导波雷达变送器是基于TDR技术。(时域反射原理)TDR利用导波(探杆)传播电磁脉冲信号。当脉冲到达介电常数高于其行进的空气(εr= 1)的液体表面时,一部分脉冲被反射。通过超高速计时电路来***测量信号传输的时间,从而实现对液位(固体料位)的***测量 更多导波雷达产品
Magnetrol主要产品:
1、MAGNETROL液位计
2、MAGNETROL变送器
3、MAGNETROL液位开关
4、MAGNETROL浮筒液位变送器
5、MAGNETROL磁浮子液位计
6、MAGNETROL热式气体质量流量计
7、MAGNETROL浮球液位开关
8、MAGNETROL超声波液位计
9、MAGNETROL液位变送器
Magnetrol型号产品名称型号
MAGNETROL(MAGNETROL)磁致伸缩位移传感器MG8100-1C7P1D5MDXNF91 G1/1000 H4050 磁致伸缩位移传感器MG8100-1C7P1D5MDXNF91 G1/1000 H4050
MAGNETROL(MAGNETROL)磁致伸缩位移传感器MG8100-1C7E1B5MDXNF91 E1/800 H1800 磁致伸缩位移传感器MG8100-1C7E1B5MDXNF91 E1/800 H1800
09-5129-001 | Magnetrol Sensor Amp Bd 传感器09-5129-001
09-5129/09-5126 | Magnetrol 2-bd Assembly09-5129/09-5126
Magnetrol XC35-1S40-CDHXC35-1S40-CDH
Magnetrol F10-1D22HM7F10-1D22HM7
Magnetrol F-XB73-4S30-BDQF-XB73-4S30-BDQ
Magnetrol F-C35-PS40-CDAF-C35-PS40-CDA
Magnetrol B35-PB30-FNAB35-PB30-FNA
870-102-00 | Magnetrol Pcb870-102-00
09-5131-001 | Magnetrol Pcb09-5131-001
810-0205-D01 | Magnetrol Level Switch Probe810-0205-D01
09-5125-001 | Magnetrol Control Board09-5125-001
345-3442-100 | Magnetrol Ultrasonic Xmotor345-3442-100
030-2409/2407 | Magnetrol 2-bd Assembly030-2409/2407
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
Magnetrol XF10-AD24-BDBXF10-AD24-BDB
MAGNETROL ALL 磁致伸缩位移传感器MAGNETROL ALLMG8100-1C7P1D5MDXNF91 G1/1000 H4050
2MAGNETROL ALL 磁致伸缩位移传感器MAGNETROL ALLMG8100-1C7E1B5MDXNF91 E1/800 H1800
Magnetrol浮子X4M1-AD1A-REAA-1111FY1212B080
Orion lnstuments浮球开关F9K-2400-070
Magnetrol浮球开关910-WMH2-010
Magnetrol液位计705-510A-110
Magnetrol传感器705-510A-100-WH
Magnetrol浮球式位面开MODEL:910-WMH2-010 SERIAL:43040-O1
Magnetrol液位开关B75-1B20-FAD
Magnetrol导波雷达液位计7MS-A118-125-WH
Magnetrol导波雷达液位计7MR-A110-116/704-511A-1400-1M
Magnetrol导波雷达液位计传感器705-510A-110-WH
Magnetrol导波雷达液位计7MS-A118-1260-1M/705-510A-210
Magnetrol液位计705-510A-110/7MS-A118-350TK
Magnetrol导波雷达变送器705-510A-A10/7MD-A11N-130
Magnetrol开关组件089-7401-110
Magnetrol流量变送器TA2-A1BO-131
Magnetrol流量变送器TMR-A23A-018
Magnetrol流量变送器TA2-A1BO-131/TMR-A23A-018
Magnetrol流量变送器TA2-01B1-130
Magnetrol液位变送器E3B-KG3A-H1C
Magnetrol液位变送器E3A-PG3C-H11
Magnetrol液位变送器E3F-KQ4C-H1F
Magnetrol液位变送器705-510A-110
Magnetrol液位装置089-8301-002
Magnetrol雷达液位计R82-510A-011
Magnetrol雷达液位计RAA-A440-100
Magnetrol磁翻板液位计2M1-AC1A-ACAA-1111-1N1BA2B-320
Magnetrol液位开关T31-002N-BOB
MAGNETROL水流开关F50-1A2C-CKP
Magnetrol液位开关T35-O02N-BOB
Magnetrol液位开关962-50AO-010
Magnetrol液位开关B4O-5C20-FAM
Magnetrol液位开关B40-5C20-R1M
Magnetrol液位开关B40-1B6O-R1M
Magnetrol液位开关335-AA1A-G5P
Magnetrol液位开关 355-510A-10B
Magnetrol液位开关C29-1B20-CLA
Magnetrol液位开关T20-1B2A-BKP
Magnetrol液位开关T31-002N-BOB
Magnetrol液位开关T31-004A-A4P
Magnetrol液位开关T35-002N-B01
Magnetrol液位开关TD2-8D00-0G1
美国MAGNETRO变送器706
美国MAGNETROL开关
美国MAGNETROL开关A10系列
美国MAGNETROL流量计
美国MAGNETROL流量开关F10
美国MAGNETROL指示器
Magnetrol流量开关TD2-8D01-OCO/TMC-A240-015
Magnetrol雷达液位计705-510A-110/7MA-A11
0-180
Magnetrol开关组件CDD(89-7401-124)Magnetrol,585593-03-001
Magnetrol液位计XT35-O02N BOB #1
Magnetrol浮球液位开关B73-1B30-BAR SN:596842-06-001
Magnetrol液位开关961-50AO-010/9A1-A11A-008
Magnetrol电路板Z31-2844-001
Magnetrol液位开关B73-2B30 585847-02-002
Magnetrol水洗流量开关XTD1-2D0O-OCO/TMD-A110-008 sn.6190
Magnetrol.C29-1N40-BCC NO608867-01-001
Magnetrol液位开关089-7401-200/DPDT
Magnetrol开关组件FDD(89-7401-097)Magnetrol,585593-02-005
Magnetrol开关组件BDR(89-7401-097)Magnetrol,585593-08-008
Magnetrol开关组件FDM(89-7401-098)Magnetrol,585593-06-001
Magnetrol液位开关B72-1B2O-FAR NO:588897-16-001
Magnetrol液位计705-510A-110/7MA-A110-080
Magnetrol雷达液位计704-511A-140/7MR-A118-116
Magnetrol导波雷达液位变送器704-511A-140/7MR-A118-106
Magnetrol水位变送器NO.705-510-110
Magnetrol导波雷达液位计(含不锈钢测量筒)705-510A-110&7MF
Magnetrol.K35-2B30-BNB NO 598354-01-002
Magnetrol流量开关F50-1B2F-FNT
Magnetrol液位开关NO B40-5C20-R1M 2085PSI SN.618908-14-O(
Magnetrol雷达液位计705-510A-110 7MS-A118-125 XS31-4C2B-(
MAGNETROL液位开关
MAGNETROL开关TD2-8DOO-OG2/TMC-A110-005
LT-4401A雷达物位计价格低的
一、消防水泵的出水管设置要求
1、 水泵出水管的流速,关系到二次输送能耗的重要参数,参考GB50015 第3.6.9条的规定:当DN15-20时,流速小于等于1.0米/秒;当DN25-40时,流速小于等于1.2米/秒;当DN50-70时,流速小于等于1.5米/秒;当大于等于DN80时,流速小于等于1.8米/秒;
2、GB50974 第5.1.13-8条规定,当消防水泵出水管的管径小于DN250时,其流速宜为1.5m/s~2.0m/s,当管径大于DN250时,宜为2.0m/s~2.5m/s;
流速测量仪器
3、出水管上的阀门与附件设置,通常有同心大小头、压力表、可曲挠橡胶接头、止回阀、闸阀(控制阀门);
4、GB50974 第5.5.11条规定,消防水泵出水管应进行停泵水锤计算;应采取消除停泵水锤的技术措施;
5、根据《水泵及水泵站》,水泵出水管中的闸阀,因为承受高压,所以启闭都比较困难,当直径大于等于400mm时,大都采用电动或水力闸阀;
6、根据《水泵及水泵站》,当管径小于250mm时,流速1.5m/s~2.0m/s;当管径大于等于250mm时,流速2.0m/s~2.5m/s;
7、关于水锤,在压力管道中,由于流速的剧烈变化而引起一系列急剧的压力交替升降的水利冲击现象。究其原因,当属流体的惯性,只不过流体的惯性更为复杂。
8、关于停泵水锤的防护措施:设水锤消除器、设空气缸、采用缓闭阀、取消止回阀、其他措施。
9、消防泵出口可采用多功能水泵控制阀(CECS132:2002)。附件连接:水泵—同心大小头—压力表—多功能水泵控制阀—可曲挠橡胶接头—检修用阀门。
10、停泵水锤防护措施有多种,不一定非要采用带胶囊的水锤消除器;在流量不是很大、扬程不是很高时,未必一定要设水锤消除器,设微阻缓闭止回阀等具有缓闭功能的止回阀一样可以。
11、GB50974 第8.3.3条规定,消防水泵出水管上的止回阀宜采用水锤消除止回阀,当消防水泵供水高度超过24m时,应采用水锤消除器。当消防水泵出水管上设有囊式气压水罐时,可不设水锤消除设施。
二、消防水泵吸水和出水管上的压力表设置要求:
1、选压力表时,应注明名称、型号、精度等级和测量上限值等。
2、压力在+40Kpa以上时,一般选用弹簧管压力表或波纹管压力计。
3、一般测量用压力表,应选用1.6级或2.5级。
4、在管道和设备上安装的压力表,表盘直径为中l00mm或中150mm;安装在照度较低、位置较高或示值不易观测场合的压力表,表盘直径为中150mm或中200mm。
5、 测量稳定的压力时,正常操作压力值应在仪表测量范围上限值的1/3~2/3;测量脉动压力(如:泵、压缩机和风机等出口处压力)时,正常操作压力值应在仪表测量范围上限值的1/3~1/2。
6、GB50974要求压力表量程应不小于设计工作压力的2倍。
三、消防水泵吸水管上的真空压力表的设置要求:
真空压力表的压力在-0.1Mpa~0Mpa时,宜选用弹簧管真空压力表。
四、消防水池水位监测装置设置要求:
GB50974 第4.3.9条的要求,消防水池应设置就地水位显示装置,并应在消防控制中心或值班室等地点设置显示消防水池水位的装置,同时有高和水位报警的装置。液位计分类:液位计种类繁多,如磁翻柱液位计、浮球液位计(液位开关,机电人脉公众号)、玻璃板式液位计、玻璃管式液位计、超声波液位计、导波雷达液位计、投入式液位变送器等等。
1、对消防水池而言,如采用磁翻板液位计等,需要在消防水池侧壁做好留洞工作(小规格防水套管为DN50,然后通过管道变径连接液位计)。
2、如采用投入式液位变送器,投入式液位变送器由不锈钢探头、导气电缆和电气盒组成,电源为13—36VDC(直流电源)。可结合消防水池侧壁检修孔,将不锈钢探头和导气电缆投入水池内。(不锈钢探头贴水池底板安装)
五、流量计量装置设置要求:
流量计常用的有电磁流量计(管段式和插入式)、超声流量计、涡街流量计、转子流量计等。
以电磁流量计为例,安装于选用注意事项如下(理论上,只要被测流体具备一定的导电性(导电率大于5 μ S/cm),就可以选用电磁流量计):
1、公称压力常用有0.6,1,1.6,4MPa等。
2、供电电源:单相交流电 85-265 V, 45-63Hz,功率小于20W;直流供电11-40VD.C。
3、应安装在水平管道较低处和垂直向上处,避免安装在管道的高点和垂直向下处。
4、测量管道内充满液体。
5、流量计前方少要有5D(D为流量计内径)长度的直管段,后方少要有3 D(D为流量计内径)长度的直管段。
6、测量一般的介质时,电磁流量计的满度流量可以在测量介质流速0 . 5~12m/s 范围内选用,范围比较宽。选择仪表规格(口径)不一定与工艺管道相同,应视测量流量范围是否在流速范围内确定,即当管道流速偏低,不能满足流量仪表要求时或者在此流速下测量准确度不能时,需要缩小仪表口径,从而提高管内流速,得到满意测量结果。
测量导电性良好的液体,通常大流速不超过5m/s,经济流速范围在1.5m/s~3m/s。测量低电导率的流体,则尽可能选择低流速,原因是流速提高流动噪声会增加,从而导致流量信号输出晃动现象。
7、一般传感器供货时已经设计了接地电,但是当外界电磁场干扰较大时,电磁流量计应另行设置接地装置,接地线采用截面积大于4 mm 2 的多股铜线,接地线埋入潮湿地下1m,接地电阻小于10 Ω,不能和电机或其他设备共用地线。
705型导波雷达液位变送器适用于对液体、浆料及颗粒料的物位进行非接触式连续测量,适用于温度、压力变化大;有惰性气体及挥发存在的场合。
采用微波脉冲的测量方法,并可在工业频率波段范围内正常工作。波束能量较低,可安装于各种金属、非金属容器或管道内,对人体及环境均无伤害。
产品简介:
D800系列雷达液位计
类 别
D801
D802
D803
应 用
过程条件简单,腐蚀性的液体、浆料、固体
比如:
水液储罐
酸碱储罐
浆料储罐
固体颗粒
小型储油罐
存储或过程容器腐蚀性的液体、浆料、固体
比如:
水液储罐
酸碱储罐
浆料储罐
固体颗粒
小型储油罐
适应各种存储容器或过程计量环境,液体、浆料、固体
比如:
原油、轻油储罐
原煤、粉煤仓位
挥发性液体储罐
焦碳料位
浆料储罐
固体颗粒
测 量 范 围
20米
20米
35米
过 程 连 接
螺纹
法兰
法兰
过 程 温 度
-40-130℃
-40-150℃
-40-250℃
过 程 压 力
-1.0-3bar
-1.0-20bar
-1.0-40bar
重 复 性
± 3mm
± 3mm
± 3mm
精 度
0.2s(根据具体使用情况而定)
电流信号:4…20mA
精度 :<0.1%
天线材质 D801、D802为PP/PTFE
D803 为316L不锈钢
通讯接口 HART通讯协议
过程连接 D801 (PP,PTFE天线) :G1-1/2 316L不锈钢,:
D802(棒式天线) :翻边法兰DN50,DN80,DN100,DN150
D803(喇叭口形式天线):法兰DN50,DN80,DN100,DN150,DN200,DN250
电源 电源:24V DC(+/-10%),波纹电压:1Vpp
耗电量:max22.5mA
环境条件 温度:-40℃…+80℃
容器压力(表压)-1…40bar
防爆认 ExiaII C T6
外壳保护等级 IP68
两线制接线 供电和信号输出共用一根两芯导线
电缆入口:2个M20×1.5(电缆直径5…9mm)
705型导波雷达液位变送器
导波雷达液位计是化学工业中的液位计。 从导波雷达发出的高频微波脉冲沿着感知单元(钢丝绳或钢棒)传播,遇到被测定介质,介电常数急变而引起反射,脉冲能量的一部分被反射。 发射脉冲和反射脉冲的时间间隔与被测量介质的距离成比例。 导波雷达液位计是基于这个原理开发的。
导波雷达液位计的优点
1 .功耗低。 GWR输出给导波探测器的信号能量小,是正常雷达发射能量[1mW]的约10%约0.1mW]。 这是因为导波为从信号到液面的往返传输提供了有效的通路,使信号衰减保持在限度,能够测量介电常数低的介质液位,而且导波雷达的功耗小,所以采用回路电力而不是单独的交流电力,大幅度节省了安装费用。
2 .由于信号在导波中传播不受液面变动和罐中的障碍物等的影响,所以计量器接收的返回信号的能量相应强,约为发射的能量的20% (既定的0.02mW] ),而且返回信号中的干扰性杂波信号小,除测量信号外
3 .介电常数的变化对测量性能没有明显的影响。 导波雷达和普通的雷达一样,使用传输时间测定介质液位,从烃类[介电常数2~3]液体表面或水[介电常数80]面反射回来的时间相同,不同的只是信号宽度[强度]的不同。 普通雷达考虑介质的影响,比较回来的各种信号很难从杂波信号中检测出真液位信号,但是导波雷达只需要测量电磁波的传输时间,不需要信号的处理和识别。
4、光速的电磁波一定,不需要为了改变仪表范围而进行移动,不需要现场标定,只要在现场输入相关参数就可以使用。 多个仪表在检查台几分钟就完成了构成调整,构成时,需要连接24VDC的电源,提供每个罐的测定参数。
5 .介质密度的变化不影响测量,介质密度的变化影响浸渍在介质中的物体受到的浮力,但电磁波在导波中传播的影响没有。
6、雾和泡沫对测量没有影响,电磁波不会在空间中传播,雾不会引起信号衰减,泡沫也不会散射信号而失去能量。
7 .介质在导波上的沉积和污染对液位测量的影响小。 介质对探针的污染对测量液位的影响分为膜状污染和桥2种。
膜状污垢是液面水平下降时,高粘度液体或轻油浆在探针上形成的被复层。 由于这种污垢均匀地涂复在探针上,因此对测量几乎没有影响,但是架桥性污垢的形成会引起明显的测量误差,块状或条纹状的介质污垢附着在导波体上,或者桥接在两个导波体之间,在这一点上就能测量假液位。 导波雷达液位测量技术的进一步发展可以减少或消除这种测量误差。8、导波雷达水平计的价格基本上与其他常用的水平测量仪(例如,浮动水平计等)等同,远低于正常交流电力、电磁波在空间中传播的正常雷达水平计。
导波雷达液位计的功能特性
用导波雷达液位计测量液位是合适的方法
导波雷达液位计测量不受水箱形状的影响
导波雷达液位计不受介电常数、温度、压力、密度的影响
不受仓库表面变动、粉尘、蒸汽、泡沫的影响
导波雷达液位计的测量长度可以灵活改变,不需要标定
测定结果为高精度、再现性、高分辨率
测量范围是二十四米
适用介质温度范围-50 600
适用压力范围为40bar
导波雷达液位计有多种探针类型和材质
可以选择数字显示
导波雷达液位计的安装
1 )顶部直接安装,导波雷达的导波杆直接安装在容器的上端,安装方式有螺钉和法兰两种,一般插入容器内部的导波杆的长度在设计要求的测量范围内。
2 )安装测量筒,导波雷达的导波杆安装在测量筒的上端,测量筒连接到容器上,一般测量筒的侧方连接口的距离在设计要求的测量范围内。
导波雷达液位计原理
从波雷达发射的高频微波脉冲沿着探测单元传播,遇到被测量介质,介电常数急剧变化,引起反射,部分脉冲能量被反射回来。 所述发射脉冲和反射脉冲的时间间隔与被测量介质的距离成比例。
在容器中存在两种不同的介质,上层介质的介电常数小,下层介质的介电常数大的情况下,当高频微脉冲沿探针向上层介质传播时,由于该介电常数小,所以少的能量在该层的界面反射,大部分能量在上层的因此,导波雷达是一种可以测量两种不同介质的接口,其测量条件是上层介质不导电,或者介电常数比下层介质小10以上。
导波雷达液位计既可用在几何尺寸狭小的容器中,也可用在旁通管和各种尺寸的储罐中,适合卧罐和其他小型。也是安装空间有限的地下储罐的理想选择。
计采用时域反射原理(TDR)进行测量。其工作原理是:电子单元发射低功率、纳秒级电磁波脉冲,通过浸入工艺介质的导波杆(缆)传输,当接触被测时,产生反射信号,由电子部件接收,根据行程时间原理计算发射到接收的间隔时间,转换为被测介质的距离。简单来说,导波雷达液位计的工作方式就是发射—反射—接收,测量原理如图1所示。
导波雷达液位计过程连接形式灵活,工程中普遍采用法兰或螺纹安装在设备顶部,且导波杆(缆)垂直位于储罐中,也可以安装在设备旁通管内。变送器可沿水平方向360°旋转,便于电缆线连接和查看表头显示。根据介质特点,选择合理的安装位置,避免影响测量效果。
对于硬杆类导波雷达液位计,导波杆垂直插入液体介质,稳定导波杆,如果导波杆在工作期间受介质波动,可能发生移动,范围在0.3m 内,可将导波杆固定。导波杆与容器底部需有间隙,间隙至少为5mm。导波杆不得接触设备管嘴,需有的安装空间即可。而对于软缆类导波雷达液位计,导波缆杆接触介质,稳定导波缆将其引向容器底部,使用重锤或弓形夹方式固定。若金属容器壁光滑,导波雷达与设备内壁之间的水平距离小间隙为100mm,若是容器存在干扰物其小间隙则更大,以制造商资料为准。
导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。
同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。
同轴电缆等效传输线原理图如图 2-1 所示。
图 2-1 同轴电缆等效传输线原理图
由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。
这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。
其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z
, ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:
1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回
图 2-2 断路回波信号示意图
3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。
图 2-3 短路回波信号示意图
当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。
导波雷达测量系统原理:
导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。
导波雷达信号传播示意图如图2-4所示。
在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。
根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,***终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。
根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。
假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。
假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:
其中:c为电磁波在真空中的传播速度(3×10八立方米m/s)。
Y为介质的相对介电常数,
从为同轴电缆的相对磁导率(大多数液体其近似等于l}o
我们可以得到:
若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:
L可以表示为液位因罐体高度为H,***后得到的液位高度为:
h=H一L导波雷达测量系统示意图如图2-5所示。
图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆***大测量范围为6.1 m,柔性杆为***大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的较低点定义为上参考点,用它来代表液位的满点(***高可测点)和20mA输出电流。下部死区的***高点则定义为下参考点,用它来代表液位的零点(较低可测。
点)和4mA输出电流。在导波杆末端到罐底的距离为L。
由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o
一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。
在罐体内实际显示的液位高度(即以下参考点作为零点)为:
hD = h一L。一L, 这里L+L、是液位的整体迁移量。
本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,***后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。