您的位置:商铺首页 >> 行业资讯 >> 详情

贵州JYRD800雷达液位计

时间:2025-10-18 00:58

  贵州JYRD800雷达液位计

  雷达物位计的工作原理与技术特点

  雷达物位计采用微波脉冲或连续波技术进行非接触式测量,工作频率主要有6GHz、26GHz和80GHz三种。高频雷达(如80GHz)具有更窄的波束角(最小可达3°),适合狭窄空间或存在障碍物的工况。其测量原理基于时差法,通过计算微波从发射到接收的时间差确定物位高度,精度可达±1mm。不同于超声波物位计,雷达技术不受介质温度、压力变化影响,且能有效穿透蒸汽和粉尘干扰。现代产品通常配备自诊断功能,可实时监测天线污染情况,适用温度范围扩展至-200℃至+400℃。

  SWISA雷达物位计采用微波脉冲非接触定位测量技术,波束能量集中,不受环境温度、压力和被测介质特性的影响,可安装于各种金属、非金属容器或管道内,对液体、浆料及颗粒物等进行非接触式连续物位测量。相对于传统雷达物位计有更强的信号处理能力和性。

  雷达物位计安装后使用前的检查工作必不可少。一般来讲,需要做好以下几个方面的检查。1、进行现场检查:在现场检查时,要注意观察现场实际工况与雷达物位计的型号是否相匹配,并且确认安装环境是否已影响仪表使用,安装位置是否正确等,以尽可能减少和避免故障的出现,影响仪表的正常使用。所以,对雷达物位计进行现场检查,是确保仪表稳定正常运行的一项较为基础的工作,微波雷达物位计求购,不可忽视。2、进行连接检查:该项检查和现场检查有重合的地方,主要通过连接相应软件,观察雷达物位计的线性发展情况。一般而言,带按键的仪表都可以实现这项功能。当然,用户还可通过仪器去对雷达物位计的连接进行检查,以判断雷达物位计是否能够正常运行。3、进行通电检查:在通电后,能够观察到雷达物位计是否按正常的启动程序逐步进入,微波雷达物位计求购,并且正常显示。而且许多异常现象就是通电后发现的,有些甚至根本就未通上电,导致仪器不会正常工作。所以,在现场允许的条件下,微波雷达物位计求购,应进行通电检查,以观察雷达物位计的各项参数表现是否正常。雷达物位计波束能量低,可安装于各种金属、非金属容器或管道内。微波雷达物位计求购

  X波段雷达由于没有明显的应用特点,而在各大物位厂商的雷大物位技术发展中趋于被淘汰。现今物位测量领域困扰用户的是一些大型固体料仓的物位测量,是用于50/100米以内的充满粉尘和扰动的加料状态下的料仓。相关技术的仪表例如电容或导波雷达TDR在放料时物位下降时会受到很强的张力负载,可能会损坏仪表或把仓顶拉塌掉。重锤经常有埋锤的问题,需要经常维修,大多数其他机械式仪表也是这样。而高粉尘工况又可能会超出非接触式超声波物位测量系统的能力。 高频的调频雷达技术尤其适合这种大型固体料仓的物位测量!微波雷达物位计求购电容式物位计:防尘、防挂料、防蒸汽、防冷凝。

  与超声波物位计工作模式相同,雷达物位计同样采用发射-反射-接收的工作模式,不同是雷达超声波物位计的测量主要依赖超声波换能器,而雷达物位计则依靠高频头和天线;超声波物位计使用机械波,而雷达物位计使用的是超高频率(几G到几十G赫兹)电磁波。电磁波以光速运行,运行时间可以通过电子部件被转换成物位信号。另一种常见的雷达物位计是导波雷达物位计。导波雷达物位计是依据时域反射原理(TDR)为基础的雷达料位计,雷达料位计的电磁脉冲以光速沿钢缆或探棒传播,当遇到被测介质表面时,雷达料位计的部分脉冲被反射形成回波并沿相同路经返回到脉冲发射装置,发射装置与被测介质表面的距离同脉冲在其间的传播时间成正比,经计算得出液位高度。

  在很多行业,使用物料进行相关生产操作的过程当中,需要通过一定的仪器设备来做的测量,这样才能的做把关的工作,同时也会对生产过程带来一定的季节效应,提高它的生产效率。通常情况下雷达物位计性能的稳定,因此雷达物位计厂家介绍在使用的时候,不管接触的环境或者介质,基本上都不会产生腐蚀,同时也不太会受泡沫以及大气当中的水蒸气和压力变化的影响。同时雷达物位计还能够用在严重粉尘环境当中,并且能够正常的发挥效用,而且再加上它的体积比较小,所以使用起来很方便,不会产生磨损或污染之类的情况。超声波物位计又分为很多型号,比如防腐超声波物位计,固体式超声波料位计。

  雷达物位计应用于高温工况下,所选雷达物位计应满足在高温环境下所选仪表构件尺寸不会变化,零件不会软化,密封性不致受损的要求。应用于低温场合时,为避免仪表结霜或结冰影响仪表性能,所购买的仪表应考虑保温和加蒸汽加热夹套等,避免低温时很多材料容易发脆折断。根据工况环境对于防护等级的要求,注意选择防护等级向匹配的雷达物位计,渗漏现象的出现。如果仪表需要用户介质或环境易的场合,所选购的仪表还应满足国家规定的防爆要求。同时,结合现场特点,选用相应防爆等级的本安或隔爆型雷达物位计,尤其应注意的是,如果所选购的为隔爆型雷达物位计,应注意对隔爆罩壳的保护,避免因隔爆面损坏使仪表丧失隔爆作用,导致事故的发生。如果需要测量的是内浮顶罐、外浮顶罐、带压罐、带有搅拌器或有旋流过程储罐的液位,选购导波式雷达物位计较为理想。但如果介质的介电常数低于1.4,此时则不建议选用雷达物位计进行测量。超声波物位计属于精密仪表,其利用测量时间差的原理完成测量步骤。微波雷达物位计求购

  核辐射式物位仪表:利用物质(一定物位的液体或固体)对核辐射的吸收。微波雷达物位计求购

  由于在重大工程、工业装备和质量、基础科研中,仪器仪表都是必不可少的基础技术和装备重点,除传统领域的需求外,新兴的智能制造、离散自动化、生命科学、新能源、海洋工程、轨道交通等领域也会产生巨大需求。中国的新型工业化进程,信息化和工业化融合的进一步加深,带动各个工业领域对于流量,压力 ,温度,物液位等产品的需求。在国民经济运行中,电子科技领域内的技术开发、技术咨询、技术服务、技术转让,电工设备,电气 设备、仪器仪表,电器设备,五金标准件,五金交电,电线电缆,金属制品,机械设备的批发、零售,仪器仪表及机电设备的加工(限分支机构经营)。等设备是提高劳动生产率的倍增器,对国民经济有着巨大的作用和影响力。美国商业部地区技术和标准研究院(NIST)提出的报告称:美国90年代仪器仪表工业产值只占工业总产值的4%,但它对国民经济(GNP)的影响面却达到66%。从销售广义角度来说,仪器仪表也可具有自动操控、报警、信号传递和数据处理等功能,例如用于工业生产过程自动操控中的气动调节仪表,和电动调节仪表,以及集散型仪表操控系统也皆属于仪器仪表。微波雷达物位计求购

  物位计是用于监测仓储过程中重要的设备,它主要通过不同的技术原理来实现对物料或液体的物位监测。其中一些关键因素是决定监测仓储过程的关键。以下是关于物位计的工作原理和一些应用案例分析:

  工作原理:物位计的工作原理可以基于多种技术实现,常见的包括:

  浮子式物位计:

  原理:利用浮子随液位的变化上下浮动,通过机械传动或磁性耦合作用,转换为电信号输出。

  应用:适用于液体和低粘度介质的物位监测,如水、油等。

  电容式物位计:

  原理:通过电容的变化来检测物料或液体与电之间的介电常数差异,从而确定物位高度。

  应用:广泛用于粉体、颗粒状物料的物位监测,如粮食、水泥等。

  超声波物位计:

  原理:利用超声波的传播时间来计算物位高度,通过发射器发送声波并接收回波来实现测量。

  应用:适用于开放式容器或有挡板的封闭容器,可以测量较大范围的物位高度。

  雷达物位计:

  原理:利用雷达波(微波或毫米波)发射器发送信号,并接收被物料反射回来的信号,通过时间延迟来计算物位高度。

  应用:适用于各种工业应用,包括液体、固体和粉体的高精度测量。

  应用案例分析

  食品和饮料行业:

  使用电容式或超声波物位计监测原料、成品和储存罐的物位,确保生产过程中的物料管理和储存。

  化工和制行业:

  需要控制液体和粉体原料的供给和储存,常用雷达或浮子式物位计来实现对各种化学品的准确监测。

  电力和能源行业:

  用于监测煤仓、石油储罐等的物位,确保燃料供给和储存。

  水处理和环境工程:

  利用超声波或雷达物位计监测水库、污水处理设施中的水位变化,确保运行效率和环境。

  总结:物位计作为现代工业自动化过程中的传感器之一,其选择需根据具体应用环境和测量要求来确定。不同的工作原理和技术特点决定了物位计在不同行业和场景中的适用性和精度,有效地提升了生产效率和性。

  好的,我们来详细解释一下雷达物位计的工作原理,并尝试用文字描述其原理图解。

  雷达物位计的核心工作原理是利用电磁波(通常为微波) 发射到被测物料表面并接收其回波,通过测量电磁波往返传播所需的时间来计算物料表面到天线(参考点)的距离,进而确定料位高度。

  基本公式简单:

  :光在空气中的速度 (约 3 * 10⁸ m/s)

  :电磁波从天线发出到接收反射回波之间的时间差

  :天线到物料表面的直线距离

  :天线到罐底或零点(参考基准)的已知距离

  :物料的实际高度 (料位)

  信号发射: 变送器中的高频电子电路产生特定频率(如 6GHz, 26GHz, 80GHz K波段)的微波脉冲信号或连续波调频信号。

  信号传播: 此微波信号通过天线(如喇叭天线、杆式天线、抛物面天线或导波缆/杆)向被测介质(液体、浆料、固体颗粒)的表面辐射发射出去。

  信号反射: 当电磁波遇到介电常数(ε)明显不同于空气(或罐内气体)的物料表面时,根据物理学的反射定律,一部分能量会被反射回来。

  介电常数越高(如导电液体、水溶液等),反射越强,信号越好。

  介电常数越低(如干燥粉粒、泡沫、水蒸气),反射越弱,信号越差(需要更高频率或技术)。

  信号接收: 同一个(或特定接收)天线接收到被物料表面反射回来的微弱回波信号。

  信号处理: 这是关键的一步,电子处理单元将接收到的回波信号与发射信号进行比较和分析:

  识别有效回波: 从接收到的信号(可能包括罐壁反射、内部结构反射、噪声等)中准确识别出物料表面的有效回波信号。

  测量时间差 (Δt): 测量微波信号从发射到接收到有效回波所经过的时间 。

  距离计算: 利用光速  和测得的 ,根据公式  计算出天线到物料表面的距离 。

  物位计算: 结合预先设定或已知的罐体参考基准距离(从安装法兰/天线基准点到罐底或零点的距离 ),计算出物料的实际高度 。

  输出信号: 将计算出的物位高度  转换成标准的工业控制信号(如 4-20 mA)或数字通信信号(如 HART, Profibus PA, Foundation Fieldbus),传输给显示仪表、控制系统或上位机。

  想象一个侧面剖开的立式罐:

  顶部: 罐顶安装着雷达物位计变送器头,它包含了发射器、接收器和信号处理器。

  天线: 变送器下方连接着一个喇叭形天线(常见,用于非接触式),垂直向下延伸进入罐体空间。或者是从变送器延伸下来的一根导波缆或导波杆(用于导波雷达)。

  罐体: 罐壁标有高度刻度。

  罐底: 罐底标为参考点(零点)。

  信号传输(非接触式):

  从喇叭天线口向下发射出圆锥状的微波束(实线箭头)。

  箭头尖端抵达物料表面(液体或固体)。

  在物料表面处,一个向后的箭头代表回波反射,沿原路径返回喇叭天线。

  在喇叭天线口和物料表面之间,清晰地标注出距离 。

  在喇叭天线法兰(安装基准点)到罐底之间,清晰地标注出参考高度 。

  物料表面到罐底的距离即为物位高度 。

  信号传输(导波雷达):

  如果使用导波雷达,则用实线表示导波缆/杆从变送器垂直伸入罐内,直达罐底附近。

  微波信号沿着导波缆/杆表面向下传播(实线箭头沿杆)。

  箭头在物料表面处标示。

  在物料表面处,一个向后的箭头沿导波缆/杆向上,代表回波反射。

  同样标出 , , 。区别是电磁波被约束在导波元件附近传播。

  雷达物位计主要有两种实现ToF测量的技术:

  脉冲式雷达:

  发射固定频率的短脉冲微波信号。

  直接测量发射脉冲与接收脉冲峰值之间的时间差 。

  原理相对简单,成本较低。

  需要强的回波以便检测峰值,在低介电常数或表面不稳定(波动/泡沫)时可能受限。