江苏SYRD815-PXXBRF1BLMBL3雷达物位计
极端工况下的特殊解决方案
对于高温高压环境(如锅炉汽包),采用陶瓷密封天线和特殊散热设计,耐温达450℃;低温LNG储罐测量则需配备加热型天线防结霜。强腐蚀性介质(如浓硫酸)选用聚四氟乙烯全包覆天线,耐氢氟酸型号则采用铂铱合金镀层。高粘稠沥青储罐适用带自加热功能的导波雷达,保持测量面清洁。某钛白粉生产线实践证明,加装气扫装置(0.2MPa仪表空气)可使天线在重度粉尘环境中的维护周期从1周延长至6个月。防爆型产品通过SIL3认证,适用于危险区域Zone 0。
好的,我们来详细解释一下雷达物位计的工作原理,并尝试用文字描述其原理图解。
雷达物位计的核心工作原理是利用电磁波(通常为微波) 发射到被测物料表面并接收其回波,通过测量电磁波往返传播所需的时间来计算物料表面到天线(参考点)的距离,进而确定料位高度。
基本公式简单:
:光在空气中的速度 (约 3 * 10⁸ m/s)
:电磁波从天线发出到接收反射回波之间的时间差
:天线到物料表面的直线距离
:天线到罐底或零点(参考基准)的已知距离
:物料的实际高度 (料位)
信号发射: 变送器中的高频电子电路产生特定频率(如 6GHz, 26GHz, 80GHz K波段)的微波脉冲信号或连续波调频信号。
信号传播: 此微波信号通过天线(如喇叭天线、杆式天线、抛物面天线或导波缆/杆)向被测介质(液体、浆料、固体颗粒)的表面辐射发射出去。
信号反射: 当电磁波遇到介电常数(ε)明显不同于空气(或罐内气体)的物料表面时,根据物理学的反射定律,一部分能量会被反射回来。
介电常数越高(如导电液体、水溶液等),反射越强,信号越好。
介电常数越低(如干燥粉粒、泡沫、水蒸气),反射越弱,信号越差(需要更高频率或技术)。
信号接收: 同一个(或特定接收)天线接收到被物料表面反射回来的微弱回波信号。
信号处理: 这是关键的一步,电子处理单元将接收到的回波信号与发射信号进行比较和分析:
识别有效回波: 从接收到的信号(可能包括罐壁反射、内部结构反射、噪声等)中准确识别出物料表面的有效回波信号。
测量时间差 (Δt): 测量微波信号从发射到接收到有效回波所经过的时间 。
距离计算: 利用光速 和测得的 ,根据公式 计算出天线到物料表面的距离 。
物位计算: 结合预先设定或已知的罐体参考基准距离(从安装法兰/天线基准点到罐底或零点的距离 ),计算出物料的实际高度 。
输出信号: 将计算出的物位高度 转换成标准的工业控制信号(如 4-20 mA)或数字通信信号(如 HART, Profibus PA, Foundation Fieldbus),传输给显示仪表、控制系统或上位机。
想象一个侧面剖开的立式罐:
顶部: 罐顶安装着雷达物位计变送器头,它包含了发射器、接收器和信号处理器。
天线: 变送器下方连接着一个喇叭形天线(常见,用于非接触式),垂直向下延伸进入罐体空间。或者是从变送器延伸下来的一根导波缆或导波杆(用于导波雷达)。
罐体: 罐壁标有高度刻度。
罐底: 罐底标为参考点(零点)。
信号传输(非接触式):
从喇叭天线口向下发射出圆锥状的微波束(实线箭头)。
箭头尖端抵达物料表面(液体或固体)。
在物料表面处,一个向后的箭头代表回波反射,沿原路径返回喇叭天线。
在喇叭天线口和物料表面之间,清晰地标注出距离 。
在喇叭天线法兰(安装基准点)到罐底之间,清晰地标注出参考高度 。
物料表面到罐底的距离即为物位高度 。
信号传输(导波雷达):
如果使用导波雷达,则用实线表示导波缆/杆从变送器垂直伸入罐内,直达罐底附近。
微波信号沿着导波缆/杆表面向下传播(实线箭头沿杆)。
箭头在物料表面处标示。
在物料表面处,一个向后的箭头沿导波缆/杆向上,代表回波反射。
同样标出 , , 。区别是电磁波被约束在导波元件附近传播。
雷达物位计主要有两种实现ToF测量的技术:
脉冲式雷达:
发射固定频率的短脉冲微波信号。
直接测量发射脉冲与接收脉冲峰值之间的时间差 。
原理相对简单,成本较低。
需要强的回波以便检测峰值,在低介电常数或表面不稳定(波动/泡沫)时可能受限。
调频连续波雷达:
发射频率间线性变化(通常向上扫频)的连续微波信号。
在接收端,将当前发射的频率与被物料表面反射回来的频率(此信号在时间上有延迟,所以对应的是之前发射的较低频率)进行混频(差频)。
得到一个频率较低的差频信号(中频信号IF)。
这个中频信号的频率 与物料距离 成正比 ()。
测量中频频率 ,可以更地计算出距离 。
接收的是连续波能量,信噪比更高,抗干扰能力强,测量精度通常更高(尤其在近距离或复杂工况下),适用于低介电常数介质和存在泡沫的场合。但技术更复杂,成本通常更高。
非接触测量: 大多数(非导波)雷达不接触介质,适用于腐蚀性、粘稠、高压、高温等复杂工况。不受介质密度、压力、温度(本身)、气体组分(普通气体)影响。
抗干扰能力强: 电磁波穿透力强,能穿透泡沫、蒸汽和粉尘(粉尘过多时高频雷达效果)。
测量范围广: 从几米到上百米(导波雷达通常短距离更)。
高精度: 尤其FMCW雷达,精度可达±1mm。
安装相对简单: 只需预留安装法兰口。
维护量低: 无可动部件。
介质介电常数: 过低(<1.8)时,非接触雷达反射信号弱,测量困难。需选择高频雷达或改用导波雷达。
安装位置: 需避开进料口、搅拌器等干扰源。
天线结垢: 介质在喇叭天线上凝结或积料,会严重影响测量(尤其粉料)。需要选用防尘罩、天线(如平面天线、抛物面天线)或喷吹。
端泡沫层: 过厚过密的泡沫会吸收或散射信号。导波雷达或高频FMCW雷达通常表现。
测量盲区: 靠近天线附近一小段距离无法测量(约10-30cm,不同型号差异大)。安装时需确保料位高于盲区。
介电常数变化: 大幅度变化有时需要重新标定,但通常影响不大。
测量范围
精度要求
过程温度/压力
介质特性(液体、固体、颗粒大小、介电常数、粘附性、泡沫)
罐内安装环境(空间、蒸汽、粉尘、搅拌)
预算
雷达物位计利用微波信号的发射、传播、反射和接收,通过测量微波信号在空气中(或导波体上)往返物料表面的飞行时间,计算其距离,得出物位高度。它是一种、、非接触(大部分情况)的高精度物位测量方法,广泛应用于各种工业领域。脉冲雷达和FMCW雷达是实现这一基本ToF原理的不同技术路线,各有优劣。
希望这个详细的文字解释和原理图解描述能帮助你清晰地理解雷达物位计的工作原理!
江苏SYRD815-PXXBRF1BLMBL3雷达物位计
磁翻板液位计的定期维护
答:
磁翻板液位计为了磁翻板液位计的正常工作,磁翻板液位计附近不应有磁性材料,磁翻板液位计不应使用铁夹固定;磁翻板液位计投入运行时,先打开上部导液管阀门,然后缓慢打开下部导液管阀门,使液体介质平稳流动,避免液体介质随浮子上升,导致襟翼失效或紊乱(如果出现这种现象,可以用···...
磁性浮子液位计在应用过程中需要更新吗
答:
磁浮子液位计作为一种结构简单、观测数据直观的液位测量装置,在我公司得到了**的应用,具有良好的响应性。但是,对于一些测量位置的磁浮子,由于其位置的性,液位计在使用中发现两个缺陷,需要改进。磁浮子液位计排污后,发现浮子无法浮起。检查后发现,主要···...
磁翻板液位计在石油工业**运用的原因
答:
尽管磁翻板液位计的制造技术并不复杂,远程磁翻板液位计作为一种测量仪器,是*为的。未通过质监审核并取得相应的生产,产品质量。因此,磁性翻板液位计的采购应选择具有生产和高完整性的制造商。报价可能稍高,但产品质量和售···...
顶装式磁翻板液位计和侧装式磁板液位计安装时
答:
顶装式磁翻板液位计和侧装磁翻板液位计在安装时,有以下几个要点须注意:液位计护导管和主体导管保持垂直且在同一垂直线上,否则会影响液位的测量。安装时连杆不能弯曲,挺直装入,以磁性浮子在主导管内上下运动自如。液位计筒体内不应有固体杂质和磁屑杂质进入,以免···...
江苏SYRD815-PXXBRF1BLMBL3雷达物位计
雷达物位计原本是叫作微波物位计的,只是大家都惯了它的俗称雷达物位计,雷达是英文Radio Detection and Raging(无线电探测与测距)首字母的缩写。本篇文章小编主要来给大家讲讲雷达物位计的用途以及它的工作原理是怎样的。
首先,我们来看看雷达物位计的用途吧,雷达物位计采用微波脉冲测量方式,在工业频段可以正常使用,波束能量低。可安装在各种金属、非金属容器或管道中,可测量液体、泥浆、颗粒状物料的液位。进行非接触式连续测量。适用于粉尘、温度和压力变化较大,存在惰性气体和蒸汽的场合。雷达液位计对人体和环境无害,不受介质比重的影响,不受介电常数变化的影响,不需要现场校准。不论是对工业需要,还是对顾客经济实惠的考虑,对于这两者而言都是不错的选择。
雷达物位计的工作原理如下:微波物位计工作方式类似雷达,向被测目标发射微波,由目标反射的回波返回发射器被接收,与发射波进行比较,确定目标存在并计算出发射器到目标的距离。
科威勒拥有多年流量计研发经验。 拥有业内优秀、经验的技术人员,注重产品的优良品质,注重售后服务,以用户使用产品0风险为己任。公司主要经营:天然气流量计,污水流量计,磁翻板液位计,压缩空气流量计,蒸汽流量计,柴油流量计,涡街流量计,涡轮流量计,电磁流量计,椭圆齿轮流量计,金属管浮子流量计;压力仪表:压力表,压力变送器,差压变送器等;温度仪表:热电偶,热电阻;液位计仪表:磁翻板液位计,投入式液位计等系列产品,生产的仪表多广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。