北京平谷区写字楼人行通道闸口面部识别机生产厂家地址在哪

名称:北京平谷区写字楼人行通道闸口面部识别机生产厂家地址在哪

供应商:北京朗铭致远科技有限公司

价格:面议

最小起订量:1/套

地址:北京市石景山区鲁谷大街西富港写字楼427

手机:15611335686

联系人:刘经理 (请说在中科商务网上看到)

产品编号:219418541

更新时间:2025-01-26

发布者IP:111.196.220.38

详细说明
产品参数
品牌:朗铭
型号:LS-830
是否加工定制:支持
类型:人脸识别机
产地:北京
尺寸:260mm*260mm*150mm
经营模式:厂家直销
售后服务:售后无忧
供货方式:现货
公司行业:自动化设备
使用环境:办公楼 食堂 游乐场场 景区
系统要求:自动化
是否跨境货源:否
产品优势
产品特点: 1)系统通过分析人脸的特征,可以实现高度精准的识别; 2)适应多变的环境条件,如光照、表情、年龄等因素,不影响识别效果; 3)人脸图像信息的采集不涉及直接接触,用户无需与设备接触; 4)通用的摄像机等设备,无需添置大量的专用设备; 5)可扩展到金融、安防、教育、医疗、交通等多个领域的电子支付、门禁系统、人脸认证等.
服务特点: 北京朗铭致远科技有限公司是一家专注于智能卡一卡通系统和安防监控报警系统的企业。公司的产品包括智能卡一卡通管理平台、出入口控制系统、访客查验系统、消费系统以及监控报警系统等。我们致力于为用户提供专业、诚信、服务的解决方案,并提供从售前方案设计到售后技术服务的全过程无忧服务。

  北京平谷区写字楼人行通道闸口面部识别机生产厂家地址在哪

  人脸识别技术是生物识别技术的一种重要应用。它通过对人脸图像进行采集和处理,提取包括眼睛、鼻子、嘴巴等在内的面部特征信息,并与事先存储在数据库中的人脸数据进行比对,从而实现快速准确的身份认证。这种无需接触、操作简便且相对安全可靠的身份验证方式,使得人脸识别技术广泛应用于安防、门禁管理、考勤系统等各个领域。

  具体来说,人脸识别的工作原理是首先利用摄像头或其他设备捕捉待识别人员的面部图像,然后通过图像预处理等技术提取出人脸的特征点信息,如眉毛、眼睛、鼻子、嘴巴等的位置、大小、形状等。接下来将这些特征点信息与事先建立的人脸数据库中的信息进行对比分析,从而判断出待识别人员的身份。整个过程快速高效,操作简单,不需要接触被识别对象,因此广受欢迎。

  面部识别系统的开源实现主要包括以下几个方面:

  1)人脸检测:从图像中检测出人脸的位置和大小,通常采用基于深度学的方法,如CNN等.

  2)特征提取:从检测到的人脸图像中提取出具有代表性的特征信息,如面部特征、纹理特征等,通常采用基于深度学的方法,如FaceNet等。

  3.比对:将提取出的特征信息与己知的人脸信息进行比对,以实现人脸识别,通常采用基于距离的方法,如欧氏距离、余弦相似度等。

  4)开源项目:如SeetaFace人脸识别引擎,这是一个由中科院计算所山世光研究员带领的人脸识别研究组研发的引擎,代码基于C++实现,不依赖第三方库函数,开源协议为BSD.2,可供学术界和工业界免费使用。

  5)其他开源项目:如OpenFace,这是一个基于Python和Torch的神经网络算法实现的人脸识别工具,它的理论来自FaceNet。

  6)应用场景:面部识别技术已被广泛应用于门禁系统、监控、手机解锁等多种场景。

  总之,面部识别系统的开源实现主要依赖于深度学技术,通过训练大量的人脸数据集来学面部特征的表示,从而提取更加和准确的人脸特征信息。同时,深度学还可以实现端到端的人脸识别系统,减少了手动设计和优化特征提取算法的难度。

  人脸识别技术的应用领域十分广泛。在安防领域,它可以快速准确地进行身份验证,有效防范各种非法侵入行为。在门禁管理中,人脸识别可以取代传统的密码或刷卡方式,提高通行效率的同时也增强了安全性。在考勤系统中,人脸识别技术能够自动准确记录员工的考勤情况,杜绝了手工操作中的误差和弊端。可以说,人脸识别技术正在逐步成为一种便捷、安全的身份验证方式,在实际应用中发挥着越来越重要的作用。

  处理面部遮挡的情况可以采用以下技术:

  改进的特征提取方法:在面部遮挡情况下,传统方法可能无法有效提取完整的人脸特征。因此,研究者们开发了能够应对部分特征消失的算法,以提高在遮挡情况下的识别率。

  基于深度学的方法:利用深度神经网络,如卷积神经网络(CNN),来学面部特征的深层表示。这些方法通常具有更强的泛化能力和鲁棒性,能够地处理遮挡问题。

  多模态融合:结合多种生物特征信息,如声音、指纹等,与面部信息一起使用,以克服单一模态下遮挡带来的问题。

  三维人脸识别:通过构建三维人脸模型,即使在面部被遮挡的情况下,也能同角度获取面部的完整信息,从而提高识别的准确性。

  专门设计的网络架构:例如,有研究者提出了一种将ResNet中间特征映射的attentional pooling与一个单独的聚合模块相结合的方法,这种方法能够识别不同遮挡区域的人脸,并且对常见的损失函数进行了调整以处理被遮挡的部分