详细说明
-
产品参数
-
品牌:朗铭
-
型号:LS-830
-
是否加工定制:支持
-
类型:人脸识别机
-
产地:北京
-
尺寸:260mm*260mm*150mm
-
经营模式:厂家直销
-
售后服务:售后无忧
-
供货方式:现货
-
公司行业:自动化设备
-
使用环境:办公楼 食堂 游乐场场 景区
-
系统要求:自动化
-
是否跨境货源:否
- 产品优势
-
产品特点:
1)系统通过分析人脸的特征,可以实现高度精准的识别; 2)适应多变的环境条件,如光照、表情、年龄等因素,不影响识别效果; 3)人脸图像信息的采集不涉及直接接触,用户无需与设备接触; 4)通用的摄像机等设备,无需添置大量的专用设备; 5)可扩展到金融、安防、教育、医疗、交通等多个领域的电子支付、门禁系统、人脸认证等.
-
服务特点:
北京朗铭致远科技有限公司是一家专注于智能卡一卡通系统和安防监控报警系统的企业。公司的产品包括智能卡一卡通管理平台、出入口控制系统、访客查验系统、消费系统以及监控报警系统等。我们致力于为用户提供专业、诚信、服务的解决方案,并提供从售前方案设计到售后技术服务的全过程无忧服务。
天津东丽区企业人行通道闸口人脸识别机安装图片
低分辨率人脸识别实时性保障方法
1)数据增强:通过对训练数据集进行数据增强,如翻转、旋转、裁剪、缩放、加噪声等变换以增加训练数据的多样性和模型的泛化能力。
2)特征空间超分辨率映射:通过设计特定的神经网络结构,如残差块,实现从低分辨率人脸特征谱到高分辨率人脸特征谱的映射,以提高低分辨率人脸识别的准确率。
3)多任务级联卷积神经网络(MTCNN):MTCNN是一个基于PyTorch实现的Multi-Task Cascaded Convolutional Neural Networks,专为图像中的面部检测和关键点定位而设计,尤其在实时应用场景中表现出。
4)特征降维:使用部间隔对齐(Local Max Alignment,LMA)等方法对特征数据进行降维以减少计算量并保留有利于分类的有用信息。
5)实时视频流捕获:在OpenCV中实现一个实时视频流捕获器,并将每个视频帧送入深度学人脸检测模型进行人脸检测。
6)使用预训练模型:使用预训练的深度残差网络(ResNet)模型进行人脸识别,以提高模型的准确率和鲁棒性。
在选择人脸识别设备时,需要仔细考虑多个因素,以确保所选设备能够满足特定的应用环境和实际需求。首先,应该重点关注设备的人脸识别精度和识别速度,这是评判设备性能的关键指标。同时,还需要了解设备在不同光线条件和不同角度下的识别效果,因为实际应用场景中的光照条件和拍摄角度可能存在较大差异。 例如,在户外应用中,设备需要能够在强光或逆光环境下准确识别人脸;在监控应用中,设备应能够在各种角度捕捉人脸信息并快速完成识别。因此,在选型时,需要仔细测试设备在不同使用环境下的性能表现,并根据实际需求制定相应的评判标准,选择最为合适的人脸识别设备。只有这样,才能确保所选设备能够可靠、高效地满足实际应用需求。 此外,在选型时还需考虑设备的稳定性、易用性、兼容性等其他因素。只有全面权衡各方面指标,才能够选择出最适合特定应用场景的人脸识别解决方案,从而提高整个系统的性能和可靠性。
在二十世纪五六十年代至八十年代,人脸识别尚被视为一个通用的辨识难题,其主要依据人类几何结构特征来进行判断。然而,随着时光流转,踏入二十世纪九十年代,人脸识别技术迎来了突飞猛进的发展,诸如Eigenface等经典算法应运而生,标志着人脸识别领域步入了一个崭新的纪元。
在这个阶段,人脸对齐技术逐渐崭露头角,作为提升识别效果的关键环节,受到广泛关注。人脸对齐的初衷是将捕获的人脸图像规范化到一个标准视角,为后续的辨识过程奠定基础。为实现这一目标,研究学者们尝试了诸多方法,如相似变换和级联形状回归模型。后者在特征点定位任务中取得了显著成果,通过学从人脸表象到人脸形状的映射函数,提高了对齐的度。