天津写字楼人行通道闸口面部识别机生产厂家地址在哪

名称:天津写字楼人行通道闸口面部识别机生产厂家地址在哪

供应商:北京朗铭致远科技有限公司

价格:面议

最小起订量:1/套

地址:北京市石景山区鲁谷大街西富港写字楼427

手机:15611335686

联系人:刘经理 (请说在中科商务网上看到)

产品编号:218754495

更新时间:2024-11-26

发布者IP:111.196.220.38

详细说明
产品参数
品牌:朗铭
型号:LS-830
是否加工定制:支持
类型:人脸识别机
产地:北京
尺寸:260mm*260mm*150mm
经营模式:厂家直销
售后服务:售后无忧
供货方式:现货
公司行业:自动化设备
使用环境:办公楼 食堂 游乐场场 景区
系统要求:自动化
是否跨境货源:否
产品优势
产品特点: 1)系统通过分析人脸的特征,可以实现高度精准的识别; 2)适应多变的环境条件,如光照、表情、年龄等因素,不影响识别效果; 3)人脸图像信息的采集不涉及直接接触,用户无需与设备接触; 4)通用的摄像机等设备,无需添置大量的专用设备; 5)可扩展到金融、安防、教育、医疗、交通等多个领域的电子支付、门禁系统、人脸认证等.
服务特点: 北京朗铭致远科技有限公司是一家专注于智能卡一卡通系统和安防监控报警系统的企业。公司的产品包括智能卡一卡通管理平台、出入口控制系统、访客查验系统、消费系统以及监控报警系统等。我们致力于为用户提供专业、诚信、服务的解决方案,并提供从售前方案设计到售后技术服务的全过程无忧服务。

  天津写字楼人行通道闸口面部识别机生产厂家地址在哪

  面部识别系统的开源实现主要包括以下几个方面:

  1)人脸检测:从图像中检测出人脸的位置和大小,通常采用基于深度学的方法,如CNN等.

  2)特征提取:从检测到的人脸图像中提取出具有代表性的特征信息,如面部特征、纹理特征等,通常采用基于深度学的方法,如FaceNet等。

  3.比对:将提取出的特征信息与己知的人脸信息进行比对,以实现人脸识别,通常采用基于距离的方法,如欧氏距离、余弦相似度等。

  4)开源项目:如SeetaFace人脸识别引擎,这是一个由中科院计算所山世光研究员带领的人脸识别研究组研发的引擎,代码基于C++实现,不依赖第三方库函数,开源协议为BSD.2,可供学术界和工业界免费使用。

  5)其他开源项目:如OpenFace,这是一个基于Python和Torch的神经网络算法实现的人脸识别工具,它的理论来自FaceNet。

  6)应用场景:面部识别技术已被广泛应用于门禁系统、监控、手机解锁等多种场景。

  总之,面部识别系统的开源实现主要依赖于深度学技术,通过训练大量的人脸数据集来学面部特征的表示,从而提取更加和准确的人脸特征信息。同时,深度学还可以实现端到端的人脸识别系统,减少了手动设计和优化特征提取算法的难度。

  产品特性

  <采用基于改进的多任务级联卷积神经网络的人脸检测技术,降低了对图片质量的要求,大幅提升了人脸的检测速度

  <处理器搭载高性能处理器,性能提升5-10倍,为复杂的数学和几何计算带来*计算能力

  <200万像素,高清宽动态摄像头

  <支持复杂光环境下人脸识别,逆光、背光、全黑等环境

  <支持1:1人脸识别及人比对,1:N人脸识别

  <内置WiFi模块,可作为热点及WiFi连接

  <支持人脸实时抓拍,抓拍照片实时存储上传后台

  <一体机完脸抓拍、比对功能

  <人脸识别速度≤0.3秒

  <产品内置高显LED补光光源,有效人脸脸部光线均匀

  <人性化语音提示功能,播报比对核验结果,语音可自定义

  <屏保自定义,UI接口全开放,实时获取本地天气

  <前置钢化玻璃面板,外观整体有质感

  如何根据具体应用场景选择合适的图像增强方法来提升低分辨率人脸识别的准确度?

  在选择图像增强方法以提升低分辨率人脸识别的准确度时,应考虑以下几个要点:

  1)数据增强策略:一种有效的方法是使用数据增强策略,如从训练数据集中随机选取人脸图像样本,对其进行预设倍率的下采样,得到低分辨率人脸图像样本,再对这些低分辨率人脸图像样本进行恢复和重建,得到与原始图像尺寸相同的高清人脸图像样本。

  2)超分辨率技术:另一种方法是使用超分辨率技术,如基于生成对抗网络的超分辨率算法,通过深度学模型将低分辨率图像上采样到高分辨率,然后再进行人脸识别。

  损失函数的设计:可以使用的损失函数,如八元组损失,它利用四个三元组损失项来捕3获高分辨率和低分辨率人脸之间的关系,提高网络对图像分辨率的鲁棒性。

  4)特征提取器的设计:设计的特征提取器,如使用ResNet网络作为特征提取器,并将其一层全连接层丢弃掉,以便地捕捉人脸的关键特征。

  5)光照和环境因素的考虑:在实际应用场景中,低分辨率人脸图像可能同时受到随机低质因素如拍摄长距离和低曝光等影响,导致图像呈现低分辨率和低光照等问题。因此,需要考虑光照和环境因素,使用适当的图像增强方法来改善图像质量。

  综上所述,选择合适的图像增强方法需要综合考虑数据增强策略、超分辨率技术、损失函数的设计、特征提取器的设计以及光照和环境因素的考虑。在实际应用中,可以根据具体的场景和需求,选择适合的图像增强方法来提升低分辨率人脸识别的准确度

  安装与部署:

  在执行人脸识别设备的安装与部署过程中,需确保以下几点:

  1. 选择合适的安装位置:通常情况下,应保证摄像头能有效捕捉到人脸,以保证识别的准确性。

  2. 设备供电:连接设备至电源,并确保设备正常启动。

  3. 网络连接:根据设备需求,接入网络,以便于数据上传或实现远程管理。