北京丰台区人行通道闸口面部识别机生产厂家

名称:北京丰台区人行通道闸口面部识别机生产厂家

供应商:北京朗铭致远科技有限公司

价格:面议

最小起订量:1/套

地址:北京市石景山区鲁谷大街西富港写字楼427

手机:15611335686

联系人:刘经理 (请说在中科商务网上看到)

产品编号:218562432

更新时间:2024-11-11

发布者IP:111.196.220.38

详细说明
产品参数
品牌:朗铭
型号:LS-830
是否加工定制:支持
类型:人脸识别机
产地:北京
尺寸:260mm*260mm*150mm
经营模式:厂家直销
售后服务:售后无忧
供货方式:现货
公司行业:自动化设备
使用环境:办公楼 食堂 游乐场场 景区
系统要求:自动化
是否跨境货源:否
产品优势
产品特点: 1)系统通过分析人脸的特征,可以实现高度精准的识别; 2)适应多变的环境条件,如光照、表情、年龄等因素,不影响识别效果; 3)人脸图像信息的采集不涉及直接接触,用户无需与设备接触; 4)通用的摄像机等设备,无需添置大量的专用设备; 5)可扩展到金融、安防、教育、医疗、交通等多个领域的电子支付、门禁系统、人脸认证等.
服务特点: 北京朗铭致远科技有限公司是一家专注于智能卡一卡通系统和安防监控报警系统的企业。公司的产品包括智能卡一卡通管理平台、出入口控制系统、访客查验系统、消费系统以及监控报警系统等。我们致力于为用户提供专业、诚信、服务的解决方案,并提供从售前方案设计到售后技术服务的全过程无忧服务。

  北京丰台区人行通道闸口面部识别机生产厂家

  近年来,人脸识别技术在各个领域广泛应用,许多厂商都提供了相关的云服务。这些服务不仅可以进行在线管理,还能与其他系统实现无缝集成,为用户带来极大的便利。

  首先,人脸识别云服务可以在线管理。用户可以通过网页或手机APP等远程访问,轻松查看和管理系统中的人脸数据,包括添加新人脸、修改信息、删除不需要的人脸等。这种在线管理的方式大大提高了工作效率,无需再为数据更新奔波。

  其次,人脸识别云服务与其他系统能够实现集成。比如可以与人力资源管理系统对接,为HR工作提供支持。当员工进入公司时,系统会自动识别并记录,HR可以第一时间掌握员工的出勤情况。同时,人脸识别数据还能为人事调动、绩效考核等提供依据。此外,这些云服务还能与视频监控系统联动,实现远程监管的功能,大大提升管理效率。

  产品特性

  <采用基于改进的多任务级联卷积神经网络的人脸检测技术,降低了对图片质量的要求,大幅提升了人脸的检测速度

  <处理器搭载高性能处理器,性能提升5-10倍,为复杂的数学和几何计算带来*计算能力

  <200万像素,高清宽动态摄像头

  <支持复杂光环境下人脸识别,逆光、背光、全黑等环境

  <支持1:1人脸识别及人比对,1:N人脸识别

  <内置WiFi模块,可作为热点及WiFi连接

  <支持人脸实时抓拍,抓拍照片实时存储上传后台

  <一体机完脸抓拍、比对功能

  <人脸识别速度≤0.3秒

  <产品内置高显LED补光光源,有效人脸脸部光线均匀

  <人性化语音提示功能,播报比对核验结果,语音可自定义

  <屏保自定义,UI接口全开放,实时获取本地天气

  <前置钢化玻璃面板,外观整体有质感

  性能

  <识别高度:1.2米-2.2米

  <识别距离:0.5-5米

  <人脸角度:上下30°左右30°

  <识别时间:≤0.3秒

  <用户容量:3万记录容量500万条

  <准确率:99.99%

  总的来说,人脸识别云服务的在线管理和系统集成,为用户带来了诸多便利。它不仅简化了日常工作流程,还能为数据分析提供有价值的信息支持,在各个领域都发挥着重要作用。随着技术不断进步,相信人脸识别云服务会为我们的生活带来更多惊喜

  在人脸识别中,哪些模型架构更适合处理低分辨率图像?

  在人脸识别中,处理低分辨率图像的模型架构主要包括生成对抗网络(GANS)和卷积神经网络(CNNS)。

  GANS模型如SRGAN,通过使用更小的图像输入,使用更小的卷积核对较大感受野进行采样,既利用了输入图片中邻域像素点的信息,又避免了计算复杂度的增加。CNN-Transformer协作网络(CTCNet)也是一个有效的模型,它使用多尺度连接的编码器-解码器架构作为骨干,设计了Local-Global Feature Cooperation Module(LGCM)用于特征提取,以促进部面部细节和全面部结构恢复的一致性。

  CNNs模型如Wavelet-SRNet,通过小波包分解将图像解析为一组具有相同大小的小波系数,使用简单的小波:haar小波,此小波足以描述不同频率的人脸信息。总的来说,GANS和CNNs模型在处理低分辨率图像时表现出,但具体选择哪种模型取决于具体的应用场景和数据集特性。