AH6127型耳机/受话器测试仪
该仪器主要用于测试耳机或者受话器的电声指标。仪器由专用测量分析电路, PC 机和专用的分析软件组成,功能强大,操作便捷。采集模
块可选用USB 声卡或主板集成声卡。充分降低成本投入和维护费用,具有高效、强大的分析和处理能力。
基本工作性能指标:
配件:
1、测试传声器:AWA14422 型声压场型测试传声器。
2、仿真耳:AWA6160 型仿真耳(IEC318)或AWA6162型仿真耳(IEC711)。
USB 声卡:
1、信号输入:频率范围:20 Hz~20k Hz。
幅度范围:55 dB~132 dB(传声器参考灵敏度-26
dBV/Pa)。
谐波失真准确度:优于15%。
2、信号输出:频率范围:20 Hz~20k Hz。
幅度范围:10 mV~2.5 V(RMS)。
3、本机噪声:< 50 dB(Z 计权,传声器参考灵敏度-26 dBV/Pa)。
主板集成声卡:
(1)信号输入:频率范围:20 Hz~20k Hz。
幅度范围:55 dB~132 dB(传声器参考灵敏度-26
dBV/Pa)。
谐波失真准确度:优于15%。
(2)信号输出:频率范围:20 Hz~20k Hz。
幅度范围:10 mV~2.5 V(RMS)。
(3)本机噪声:< 50 dB(Z 计权,传声器参考灵敏度-26 dBV/Pa)。
其他参数:
1、倍频程方式:1/3 OCT 、1/6 OCT 、1/12 OCT 、1/24 OCT。
扫频时间:1.68 s(20 Hz~20 kHz、1/12 OCT)。
2、测量触发方式:键盘或脚踏开关。
LME49810是一款单片200V音频功率放大器驱动器,其具有集成的Ber钳位。类似运算放大器,每个LME49810可以在高端高保真音响系统中替代数十个手工挑选并配对的分立器件。该LME49810的功能是驱动高达50mA的大功率分立输出三管,为系统提供高达3kW的功率。当实现完整的功率放大器设计时,典型的THD+N为0.0007%。其他包括50V/μs的摆率以及110dB的PSRR。
Ber钳位处理输入信号峰值。通过连接在三管基和集电之间的二管阵列来实现。其还避免了集电-发射级结的饱和,通过消除高频毛刺信号来裁剪不太明显的信号,这些毛刺信号发生在晶体管从饱和区恢复过来的时候。
在国半的听音间,除CD播放器外的电子产品都是定制的。该运算放大器是在DAC信号路径(每个立体声信道是四个)中使用的,以及电源稳压器。
AWA6163A型仿真耳的使用:
1、被测耳机和仿真耳应紧贴,消除声泄漏,同时保持测量时仿真耳外藕合腔容积5.78 cm3不变。必要时,在密闭衬套和被测耳机之间加一薄层蜡或油脂以消除声泄漏。
2、将被测耳机无声泄漏地加到仿真耳上,作用力在4~5N之间(不包括被测器件的自重)。
3、被测器件不应与仿真耳的斜面接触,只应放在它的正上方,其发声孔的中心与仿真耳的轴心对齐。
注:仿真耳中的测试传声器为精密测试器件,使用时请轻拿清放,一般情况下不要旋下保护罩,更不要用手触摸膜片,以免损坏膜片。
主要技术:
1、频率范围:100~8000 Hz。
2、频率响应准确度:≤±0.5 dB(200Hz~5000 Hz),≤±1 dB(<100 Hz~8000 Hz)。
3、执行标准:GB/T 25498.3-2010《校准压耳式测听耳机用声耦合腔》(IDT 60318-3:1998)。
AH6012型双通道前置放大器电源
概述:AH6012是双通道前置放大器电源,能同时为两只LEMO接口类型的前置级提供恒定的电压源或BNC接口类型的前置级提供恒定的电流源,LEMO接口兼容BK前置级。具有高信噪比以及低失真率等特点。主要用于电声和振动测量,也可以应用于实验室和各种实际应用场合的测量。
主要技术性能:
1、输入信号接口:LEMO或BNC输出信号接口:BNC;
2、麦克风供电:直流±30V或ICP4mA~10mA;
3、频率响应:10Hz~50kHz(±0.3dB)增益:0dB
AWA6128S 型扬声器测试仪
主要技术性能:
1)测试传声器:自由场型测试传声器。
2)扫频方式:1/3 OCT 、1/6 OCT 、1/12 OCT、1/24 OCT。
3)扫频时间:约 1 s(20 Hz~20 kHz、1/12 OCT)。
4)信号输入:频率范围:20 Hz~20 kHz 幅度范围:50 dB~130 dB(传声器参 考灵敏度-26 dBV/Pa)。
阻抗范围:0 Ω~300 Ω 谐波失真准确度:优于15%。
5)信号输出:频率范围:20 Hz~20 kHz
幅度范围:10 mV~10 V(RMS)。
6)本机噪声:<-75 dBV(Z计权)。
7)扫频触发方式:鼠标、键盘和脚踏开关。
8)电源:220 V/50 Hz交流市电。
9)工作环境:温 度:0 ℃~40 ℃
相对湿度:20 %~90 %
大 气 压:86 kPa~106 kPa。
10)尺寸:440 mm×325 mm×151 mm(W×D×H)。
11)重量:8 kg。
12)测试附件:消声箱或 IEC 障板。
听诊器测试仪如何通过声音捕捉、分析与处理来评估听诊器的性能?
确保听诊器能够准确、清晰地传递身体内部的声音对医疗诊断。为了达到这一目的,听诊器测试仪采用了一系列技术手段和步骤来综合评估听诊器的性能。以下是具体探讨:
1、声音的捕捉过程
捕捉声音:测试仪使用高灵敏度的麦克风捕捉从听诊头传来的声音。这些声音信号经过数字化转换,为后续的分析提供基础数据。
音频质量分析:通过对声音信号的频率、振幅等属性进行分析,可以评估听诊器在传输声音时的清晰度和真实度。此步骤关键在于识别可能扭曲或衰减声音信号的因素。
2、声音的深入分析
频率响应测试:通过比较听诊器输出的声音频率与标准测试声源的频率,可以评估听诊器是否能准确地复制不同频率的声音。这尤其重要,因为心脏和肺部产生的声音具有不同的频率范围。
环境噪音分析:在实际操作环境中,听诊器可能会受到周围噪音的干扰。测试仪会评估听诊器在有背景噪音的情况下的性能,包括其消噪功能的效果。
3、声音的处理优化
信号增强处理:对于捕捉到的声音信号,测试仪应用数字信号处理技术来增强信号中的有用信息,如放大低频心脏音或高频呼吸音,从而使得医生能更清楚地听到这些声音。
数据可视化与报告:现代测试仪不仅提供声音分析,还能生成可视化的数据报告,如频率响应图和性能评分,帮助用户直观理解听诊器的性能。
4、高级功能的拓展
多场景模拟:一些高端的测试仪能模拟不同的临床使用场景,如静息状态下的心脏监听或运动后的肺部听诊,以评估听诊器在不同情况下的表现。
自动校准功能:基于测试结果,某些测试仪还能自动调整听诊器的音频特性,确保其符合特定的性能标准。
此外,在了解上述内容后,还可以关注以下几个方面:
操作简便性:选择易于操作的模型,便于医护人员上手。
维护及升级:考虑设备的维护成本及厂商是否提供定期的软件升级服务。
总的来说,听诊器测试仪通过一系列的技术手段,从声音捕捉到分析处理,全面评估听诊器的性能。这不助于确保听诊器的性和有效性,也对提高医疗诊断的准确性发挥着关键作用
3、工作电源:220 V/50 Hz 交流市电。
4、工作环境:环境温度:0 ℃~40 ℃。
相对湿度:20 %~90 %。
大气 压:86k Pa~106k Pa。