详细说明
-
产品参数
-
品牌:恒鑫隆
-
产地:深圳
-
加工定制:是
-
适用范围:工厂、单位、小区、学校、景区等
-
材质:铝合金
-
是否进口:否
-
颜色:深空灰黄色可选
-
公司行业:安防
对该系统使用的模板匹配的识别方法,它先依次提取需要识别的字符的二值图像上下左右四个点的像素点,想沿着图像中心方向提取周围像素点,计算出每个像素点与标准模板对应该坐标的像素点的相识度,其中相似度高的标准字符图就作为需要的字符的对应字。也可以计算出原始图像一些特征像素点之间的距离,再计算出标准模板对应特征点的距离,再判断他们距离的差异。取小差异的标准模板为结果。但是,由于原始字符在可能会由于拍摄的时候角度原因和图像经过处理后,图像像素点距离发生改变。所以,在对标准模板的设计时应根据实际拍摄角度等多做一些相对于的模板,让比较结果更为。
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础。所谓边缘是指其周围像素灰度值有阶跃变化或屋顶变化的那些像素点的集合。边缘广泛存在于物体与背景之间、物体与物体之间、图像基元与基元之间。它是图像分割所依赖的重要特征,图像理解和分析的步一般都是边缘检测。边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用部图像微分技术来获得边缘检测算子。经典的边缘检测方法,是通过对原始图像中像素的某小邻域构造边缘检测算子来达到检测边缘这一目的的。
在对车牌定位之前,应对原始图像进行一些预处理前,为减少对后续定位、识别的影响,为图像具有较大的对比度和较大的清晰度,地运用于牌照分割和字符识别,应对原始图像进行一些处理。因为对于原始图像的来源主要是摄像机直接拍摄处理道路上行驶的车辆,加上车牌照本身的整洁程度、自然光的照射条件、摄像机镜头的光学畸变产生的噪声、拍摄时摄像机与车牌照的距离、车辆行驶的速度以及摄像头的拍摄角度,在这些负面的影响下有可能造成车牌照的图像清晰度不够、角度不正、等严重损坏影响对车牌字符识别的准确度。导致对于车牌的定位和字符分割的结果不准确。
依靠科技求发展,不断为用户提供满意的智能化系统,优质的产品、适中的价格、专业的技术和一流的服务是我们永恒的追求。在机会和挑战并存的竞争环境中,为满足市场不断增长的需求,公司将一直站在行业高新技术的尖端,秉承“理性务实、创新发展”的宗旨,奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的智能产品、高质量的工程设计改造及无微不至的售后服务。