详细说明
-
产品参数
-
品牌:恒鑫隆
-
产地:深圳
-
加工定制:是
-
适用范围:工厂、单位、小区、学校、景区等
-
材质:铝合金
-
是否进口:否
-
颜色:深空灰黄色可选
-
公司行业:安防
图像中车辆牌照是具有比较显著特征的一块图象区域,这此特征表现在:近似水平的矩形区域;其中字符串都是按水平方向排列的;在整体图象中的位置较为固定。正是由于牌照图象的这些特点,再经过适当的图象变换,它在整幅中可以明显地呈现出其边缘。边缘提取是较经典的算法,此处边缘的提取采用的是Roberts算子。图9即是运用Roberts算子进行边缘检测得到的图像。车牌边缘很明显,但是车牌边缘并不是连续的,不利于根据其特征进行进一步的判断。因此,需要对其进行形态学的处理,使其成为一个连通的整体,便于后续定位。在进行形态学处理时,首先采用imclearborder 函数对提取后的车牌边缘进行连通处理,删除和图像边界相连的细小的对象,使得相邻的区域可以连成一个整体。然后进行数学形态学的腐蚀和膨胀运算,从而使车牌区域的垂直边缘连接成一个整体,同时周围的干扰区域分离,成为一个独立的区域。水平结构元素可以是形如[1...1]的滑动窗口,结构元素的大小取决于车牌图像的大小,一般取车牌图像大小的统计均值。
在对车牌定位之前,应对原始图像进行一些预处理前,为减少对后续定位、识别的影响,为图像具有较大的对比度和较大的清晰度,地运用于牌照分割和字符识别,应对原始图像进行一些处理。因为对于原始图像的来源主要是摄像机直接拍摄处理道路上行驶的车辆,加上车牌照本身的整洁程度、自然光的照射条件、摄像机镜头的光学畸变产生的噪声、拍摄时摄像机与车牌照的距离、车辆行驶的速度以及摄像头的拍摄角度,在这些负面的影响下有可能造成车牌照的图像清晰度不够、角度不正、等严重损坏影响对车牌字符识别的准确度。导致对于车牌的定位和字符分割的结果不准确。
依靠科技求发展,不断为用户提供满意的智能化系统,优质的产品、适中的价格、专业的技术和一流的服务是我们永恒的追求。在机会和挑战并存的竞争环境中,为满足市场不断增长的需求,公司将一直站在行业高新技术的尖端,秉承“理性务实、创新发展”的宗旨,奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的智能产品、高质量的工程设计改造及无微不至的售后服务。
“让科技刷新您的梦想”“让我们的服务成就您的品牌!”是我们秉承的宗旨,期待与更多的合作伙伴同行,赢得机会,赢得市场!
现在我们开车不管到哪里都很少会看到靠人工值守的收费岗亭了,越来越多的停车场都已经使用上了智能停车场收费管理系统,这样让原本进出要靠一两个人工来值守的收费岗亭变成只需要一个人甚至无人值守的岗亭,这种大的改变不仅释放人力,而且智能云平台管理,在很大程度上车牌识别速度,能够的完成车辆的通行和收费流程,车主可以自由的选择使用支付宝或微信在线自助缴费,智能便捷,收费效率的同时,杜了收费管理方面的漏洞。