详细说明
-
产品参数
-
品牌:恒鑫隆
-
产地:深圳
-
加工定制:是
-
适用范围:工厂、单位、小区、学校、景区等
-
材质:铝合金
-
是否进口:否
-
颜色:深空灰黄色可选
-
公司行业:安防
依靠科技求发展,不断为用户提供满意的智能化系统,优质的产品、适中的价格、专业的技术和一流的服务是我们永恒的追求。在机会和挑战并存的竞争环境中,为满足市场不断增长的需求,公司将一直站在行业高新技术的尖端,秉承“理性务实、创新发展”的宗旨,奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的智能产品、高质量的工程设计改造及无微不至的售后服务。
模板匹配是图象识别方法中具代表性的基本方法之一,它是将从待识别的图象或图象区域f(i,j)中提取的若干特征量与模板T(i,j)相应的特征量逐个进行比较,计算它们之间规格化的互相关量,其中互相关量大的一个就表示期间相似程度高,可将图象归于相应的类。也可以计算图象与模板特征量之间的距离,用小距离法判定所属类。然而,通常情况下用于匹配的图象各自的成像条件存在差异,产生较大的噪声干扰,或图象经预处理和规格化处理后,使得图象的灰度或像素点的位置发生改变。在实际设计模板的时候,是根据各区域形状固有的特点,突出各类似区域之间的差别,并将容易由处理过程引起的噪声和位移等因素都考虑进去,按照一些基于图象不变特性所设计的特征量来构建模板,就可以避免上述问题。
对车牌照识别系统的发展及其组成模块进行综述,论述了每一个模块的作用,以MATLAB语言为主要编程语言,实现车牌识别系统中车牌定位、字符切分以及字符识别的功能。研究了用于车牌识别的多门基础理论如数字图像处理、数学形态学、模式识别等;重点研究了常用的数字图像处理算法,包括图像的灰度变换及修正、二值化、图像去噪及边缘检测等。在字符分割部分前期的处理使得的分割结果比较理想,主要进行了二值化、均值滤波以及膨胀与腐蚀操作。在字符识别部分主要运用了模板匹配的算法,并且对神经网络算法的应用进行了初步研究。根据实验结果仍然存在的缺陷及不足,给出结论,提出展望。
对于纳入“黑名单”的车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、肇事逃逸及违章车辆等,只需将其车牌号码输入到应用系统中,车牌识别设备安装于指定的路口、卡口或由执法人员携带按需要放置,系统将识读通过车辆的牌照号码并与系统中的“黑名单”比对,一旦发现指定车辆立刻发出报警信息。系统可以全天不间断工作、不会疲劳、错误率低;可以适应高速行驶的车辆;可以在车辆行使过程中完成任务不影响正常交通;整个监视过程中司机也不会觉察、保密性高。应用这种系统将大地提高执法效率。