详细说明
-
产品参数
-
品牌:恒鑫隆
-
产地:深圳
-
加工定制:是
-
适用范围:工厂、单位、小区、学校、景区等
-
材质:铝合金
-
是否进口:否
-
颜色:深空灰黄色可选
-
公司行业:安防
字符识别的准确性直接决定了该系统是否。在之前的研究中经常被用于字符的识别主要有模板匹配法和神经网络识别法。在这次研究设计中我们采用的是模板匹配法进行识别,该方法是将分割出来的字符样本进行字符归一化处理,使图像大小与原先已经存储在计算机内的标准字符大小一致,再与标准字符进行一一对比,结果取差异小的相对应的标准字符。这种模板匹配的方法相对比较、简单。但是对字符图像要求比较高,一旦图像有噪声或者亮度问题其结果就可以能存在差异。神经网络识别法,它是结合神经网络技术,依靠人的经验来取得字符的特征,再利用神经网络的辨别能力来对字符进行识别,这个方法得到的结果会比较准确,但技术要求较高。
定位和分割的是识别系统技术主要板块,它的主要作用是图像经过预处理后得到灰度图像的照片后,以确定该图像中包含所要字符的特定位置。由于该点是原来的图像象是典型的一个子区域的,主要是周围的矩形横向确切的较高水平,相对原始图像也更侧重于的中心位置,并且灰度区域是不同的,所以边缘形检测是一个简单方案对于灰度图像检测图像分割。 图像腐蚀是一种形态学运算,它仅对二值图并且根据数学形态学集合方式而形成的到目前已经被广泛应用的数字图像处理的方法。图像腐蚀它的根本依据是:为了得到和衡量灰度图像中所要的对应物体形状,而用结构元素对灰度图进行勘测,找到图像中可以容纳下这个结构元素的位置以达到目的。图像腐蚀可以消除图像中小的而且对没有意义的“污点”,如果“污点”之间有着细小的接通,则可以选择较大的结构元素,把它们一起腐蚀掉。如果结构元素的值都是正的,则得到的图像会比输出图像亮。
识别步骤概括为:车牌定位、车牌提取、字符识别。三个步骤地识别工作相辅相成,各自的都较高,整体的识别率才会提高。识别速度的快慢取决于字符识别,字符的识别目前的主要应用技术为比对识别样本库,即将的字符建立样本库,字符提取后通过比对样本库实现字符的判断,识别过程中将产生可信度、倾斜度等中间结果值;另一种是基于字符结构知识的字符识别技术,更加有效的提高识别速率和准确率,适应性较强。 识别速度决定了车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。交通技术提出的识别速度是1秒以内,越快越好。目前市场的车牌识别系统在实际应用中识别速度平均为200毫秒。较好的车牌识别系统已经达到了10毫秒的识别时间,实际应用识别速度能够达到平均40毫秒。
依靠科技求发展,不断为用户提供满意的智能化系统,优质的产品、适中的价格、专业的技术和一流的服务是我们永恒的追求。在机会和挑战并存的竞争环境中,为满足市场不断增长的需求,公司将一直站在行业高新技术的尖端,秉承“理性务实、创新发展”的宗旨,奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的智能产品、高质量的工程设计改造及无微不至的售后服务。